The agriGO platform, which has been serving the scientific community for >10 years, specifically focuses on gene ontology (GO) enrichment analyses of plant and agricultural species. We continuously maintain and update the databases and accommodate the various requests of our global users. Here, we present our updated agriGO that has a largely expanded number of supporting species (394) and datatypes (865). In addition, a larger number of species have been classified into groups covering crops, vegetables, fish, birds and insects closely related to the agricultural community. We further improved the computational efficiency, including the batch analysis and P-value distribution (PVD), and the user-friendliness of the web pages. More visualization features were added to the platform, including SEACOMPARE (cross comparison of singular enrichment analysis), direct acyclic graph (DAG) and Scatter Plots, which can be merged by choosing any significant GO term. The updated platform agriGO v2.0 is now publicly accessible at http://systemsbiology.cau.edu.cn/agriGOv2/.
Gene Set Enrichment Analysis (GSEA) is a powerful method for interpreting biological meaning of a list of genes by computing the overlaps with various previously defined gene sets. As one of the most widely used annotations for defining gene sets, Gene Ontology (GO) system has been used in many enrichment analysis tools. EasyGO and agriGO, two GO enrichment analysis toolkits developed by our laboratory, have gained extensive usage and citations since their releases because of their effective performance and consistent maintenance. Responding to the increasing demands of more comprehensive analysis from the users, we developed a web server as an important component of our bioinformatics analysis toolkit, named PlantGSEA, which is based on GSEA method and mainly focuses on plant organisms. In PlantGSEA, 20 290 defined gene sets deriving from different resources were collected and used for GSEA analysis. The PlantGSEA currently supports gene locus IDs and Affymatrix microarray probe set IDs from four plant model species (Arabidopsis thaliana, Oryza sativa, Zea mays and Gossypium raimondii). The PlantGSEA is an efficient and user-friendly web server, and now it is publicly accessible at http://structuralbiology.cau.edu.cn/PlantGSEA.
Root hairs are an extensive structure of root epidermal cells and are critical for nutrient acquisition, soil anchorage, and environmental interactions in sessile plants. The phytohormone ethylene (ET) promotes root hair growth and also mediates the effects of different signals that stimulate hair cell development. However, the molecular basis of ET-induced root hair growth remains poorly understood. Here, we show that ET-activated transcription factor ETHYLENE-INSENSITIVE 3 (EIN3) physically interacts with ROOT HAIR DEFECTIVE 6 (RHD6), a well-documented positive regulator of hair cells, and that the two factors directly coactivate the hair length-determining gene () to promote root hair elongation. Transcriptome analysis further revealed the parallel roles of the regulator pairs EIN3/EIL1 (EIN3-LIKE 1) and RHD6/RSL1 (RHD6-LIKE 1). EIN3/EIL1 and RHD6/RSL1 coordinately enhance root hair initiation by selectively regulating a subset of core root hair genes. Thus, our work reveals a key transcriptional complex consisting of EIN3/EIL1 and RHD6/RSL1 in the control of root hair initiation and elongation, and provides a molecular framework for the integration of environmental signals and intrinsic regulators in modulating plant organ development.
Genome-wide maps of chromatin states have become a powerful representation of genome annotation and regulatory activity. We collected public and in-house plant epigenomic data sets and applied a Hidden Markov Model to define chromatin states, which included 290 553 (36 chromatin states), 831 235 (38 chromatin states) and 3 936 844 (26 chromatin states) segments across the whole genome of Arabidopsis thaliana, Oryza sativa and Zea mays, respectively. We constructed a Plant Chromatin State Database (PCSD, http://systemsbiology.cau.edu.cn/chromstates) to integrate detailed information about chromatin states, including the features and distribution of states, segments in states and related genes with segments. The self-organization mapping (SOM) results for these different chromatin signatures and UCSC Genome Browser for visualization were also integrated into the PCSD database. We further provided differential SOM maps between two epigenetic marks for chromatin state comparison and custom tools for new data analysis. The segments and related genes in SOM maps can be searched and used for motif and GO analysis, respectively. In addition, multi-species integration can be used to discover conserved features at the epigenomic level. In summary, our PCSD database integrated the identified chromatin states with epigenetic features and may be beneficial for communities to discover causal functions hidden in plant chromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.