Bioactive natural products have evolved to inhibit specific cellular targets and have served as lead molecules for health and agricultural applications for the past century. The post-genomics era has brought a renaissance in the discovery of natural products using synthetic-biology tools. However, compared to traditional bioactivity-guided approaches, genome mining of natural products with specific and potent biological activities remains challenging. Here we present the discovery and validation of a potent herbicide that targets a critical metabolic enzyme that is required for plant survival. Our approach is based on the co-clustering of a self-resistance gene in the natural-product biosynthesis gene cluster, which provides insight into the potential biological activity of the encoded compound. We targeted dihydroxy-acid dehydratase in the branched-chain amino acid biosynthetic pathway in plants; the last step in this pathway is often targeted for herbicide development. We show that the fungal sesquiterpenoid aspterric acid, which was discovered using the method described above, is a sub-micromolar inhibitor of dihydroxy-acid dehydratase that is effective as a herbicide in spray applications. The self-resistance gene astD was validated to be insensitive to aspterric acid and was deployed as a transgene in the establishment of plants that are resistant to aspterric acid. This herbicide-resistance gene combination complements the urgent ongoing efforts to overcome weed resistance. Our discovery demonstrates the potential of using a resistance-gene-directed approach in the discovery of bioactive natural products.
Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthetic pathway and is a validated target for herbicide and fungicide development. Here we report harzianic acid (HA, 1) produced by the biocontrol fungus Trichoderma afroharzianum t-22 (Tht22) as a natural product inhibitor of AHAS. The biosynthetic pathway of HA was elucidated with heterologous reconstitution. Guided by a putative self-resistance enzyme in the genome, HA was biochemically demonstrated to be a selective inhibitor of fungal AHAS, including those from phytopathogenic fungi. In addition, HA can inhibit a common resistant variant of AHAS in which the active site proline is mutated. Structural analysis of AHAS complexed with HA revealed the molecular basis of competitive inhibition, which differs from all known commercial AHAS inhibitors. The alternative binding mode also rationalizes the selectivity of HA, as well as effectiveness toward resistant mutants. A proposed role of HA biosynthesis by Tht22 in the rhizosphere is discussed based on the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.