Sensory gating is a neurophysiological measure of inhibition that is characterized by a reduction in the P50, N100, and P200 event-related potentials to a repeated identical stimulus. It was proposed that abnormal sensory gating is involved in the neural pathological basis of some severe mental disorders. Since then, the prevailing application of sensory gating measures has been in the study of neuropathology associated with schizophrenia and so on. However, sensory gating is not only trait-like but can be also state-like, and measures of sensory gating seemed to be affected by several factors in healthy subjects. The objective of this work was to clarify the roles of acute stress and gender in sensory gating. Data showed acute stress impaired inhibition of P50 to the second click in the paired-click paradigm without effects on sensory registration leading to worse P50 sensory gating and disrupted attention allocation reflected by attenuated P200 responses than control condition, without gender effects. As for N100 and P200 gating, women showed slightly better than men without effects of acute stress. Data also showed slightly larger N100 amplitudes across clicks and significant larger P200 amplitude to the first click for women, suggesting that women might be more alert than men.
The results of previous literature focusing on the effects of acute stress on human working memory (WM) are equivocal. The present study explored the effects of acute stress on human WM processing using event-related potential (ERP) techniques. Twenty-four healthy participants were submitted to stressful treatments and control treatment at different times. Cold pressor stress (CPS) was used as stressful treatment, while warm water was used as the control treatment before the WM task. Exposure to CPS was associated with a significant increase in blood pressure and salivary cortisol. After the 3-min resting period, systolic blood pressure (SBP) and diastolic blood pressure (DBP) for the CPS session significantly increased relative to the control treatment session (all p ≤ 0.01), and data also showed a significant increase of 20-min post-treatment cortisol concentration (p < 0.001) for CPS. Data from the CPS session showed significantly longer reaction times, lower accuracy, and WM capacity scores than that of the control treatment session. Interestingly, a difference between the two sessions was also found in N2pc and the late contralateral delay activity (late CDA) components. Specifically, although non-significant main effects of treatment were found for N2pc amplitudes, there was a significant interaction between treatments and stimuli conditions (processing load) [F(2,46) = 3.872, p = 0.028, η2 p = 0.14], which showed a pronounced trend toward equalization of N2pc amplitude across stimuli conditions during the CPS session clearly different from that of control treatment. As for amplitudes for late CDA, a nearly significant main effect of Treatment was found (p = 0.069). That is, the mean amplitude of the late CDA (−2.56 ± 0.27) for CPS treatment was slightly larger than that (−2.27 ± 0.22) for warm water treatment. To summarize, this study not only reported performance impairments in the WM task during CPS trials but also provided high temporal resolution evidence for the detrimental effects of acute stress on processes of information encoding and maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.