Spectral library searching has been recently proposed as an alternative to sequence database searching for peptide identification from MS/MS. We performed a systematic comparison between spectral library searching and sequence database searching using a wide variety of data to better demonstrate, and understand, the superior sensitivity of the former observed in preliminary studies. By decoupling the effect of search space, we demonstrated that the success of spectral library searching is primarily attributable to the use of real library spectra for matching, without which the sensitivity advantage largely disappears. We further determined the extent to which the use of real peak intensities and non-canonical fragments, both under-utilized information in sequence database searching, contributes to the sensitivity advantage. Lastly, we showed that spectral library searching is disproportionately more successful in identifying low-quality spectra, and complex spectra of higher- charged precursors, both important frontiers in peptide sequencing. Our results answered important outstanding questions about this promising yet unproven method using well-controlled computational experiments and sound statistical approaches.
Operation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs) in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate operations we accomplish. Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo’s criteria for a scalable quantum information processor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.