BACKGROUND The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS We observed a significant association (P<1.00×10 −10) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P = 5.10×10 −5) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae.
Staphylococcus aureus and Escherichia coli are among the most prevalent species of gram-positive and gram-negative bacteria, respectively, that induce clinical mastitis. The innate immune system comprises the immediate host defense mechanisms to protect against infection and contributes to the initial detection of and proinflammatory response to infectious pathogens. The objective of the present study was to characterize the different innate immune responses to experimental intramammary infection with E. coli and S. aureus during clinical mastitis. The cytokine response and changes in the levels of soluble CD14 (sCD14) and lipopolysaccharide-binding protein (LBP), two proteins that contribute to host recognition of bacterial cell wall products, were studied. Intramammary infection with either E. coli or S. aureus elicited systemic changes, including decreased milk output, a febrile response, and induction of the acute-phase synthesis of LBP. Infection with either bacterium resulted in increased levels of interleukin 1 (IL-1), gamma interferon, IL-12, sCD14, and LBP in milk. High levels of the complement cleavage product C5a and the anti-inflammatory cytokine IL-10 were detected at several time points following E. coli infection, whereas S. aureus infection elicited a slight but detectable increase in these mediators at a single time point. Increases in IL-8 and tumor necrosis factor alpha were observed only in quarters infected with E. coli. Together, these data demonstrate the variability of the host innate immune response to E. coli and S. aureus and suggest that the limited cytokine response to S. aureus may contribute to the well-known ability of the bacterium to establish chronic intramammary infection.
Mastitis, an inflammatory reaction of the mammary gland that is usually caused by a microbial infection, is recognized as the most costly disease in dairy cattle. Decreased milk production accounts for approximately 70% of the total cost of mastitis. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. Mammary tissue damage has been shown to be induced by either apoptosis or necrosis. These 2 distinct types of cell death can be distinguished by morphological, biochemical, and molecular changes in dying cells. Both bacterial factors and host immune reactions contribute to epithelial tissue damage. During infection of the mammary glands, the tissue damage can initially be caused by bacteria and their products. Certain bacteria produce toxins that destroy cell membranes and damage milk-producing tissue, whereas other bacteria are able to invade and multiply within the bovine mammary epithelial cells before causing cell death. In addition, mastitis is characterized by an influx of somatic cells, primarily polymorphonuclear neutrophils, into the mammary gland. With more immune cells migrating into the mammary gland and the breakdown of the blood-milk barrier, damage to the mammary epithelium worsens. It is well known that breakdown of the extracellular matrix can lead to death of the epithelial cells. Meanwhile, polymorphonuclear neutrophils can harm the mammary tissue by releasing reactive oxygen intermediates and proteolytic enzymes. In vitro and in vivo studies suggest that the use of antioxidants and other protective compounds in mastitis control programs is worth investigating, because they may aid in alleviating damage to secretory cells and thus reduce subsequent milk loss.
A persistent lactation is dependent on maintaining the number and activity of milk secreting cells with advancing lactation. When dairy cows are milked twice daily, the increase in milk yield from parturition to peak lactation is due to increased secretory activity per cell rather than to accretion of additional epithelial cells. After peak lactation, declining milk yield is due to loss of mammary epithelial cells by apoptosis. During lactation, only 0.3% of mammary cells proliferate in a 24-h period. Yet this proliferative rate is sufficient to replace most mammary epithelial cells by the end of lactation. Management practices can influence lactation persistency. Administration of bovine somatotropin may enhance persistency by increasing cell proliferation and turnover, or by reducing the rate of apoptosis. Increased photoperiod may also increase persistency of lactation by mechanisms that are as yet undefined. Increased milking frequency during the first weeks of lactation increases milk yield, even after return to less frequent milking, with increases of approximately 8% over the entire lactation. A mammary cell proliferation response to frequent milking during early lactation appears to be involved. Conversely, advanced pregnancy, infrequent milking, and mastitis increase death of epithelial cells by apoptosis. Regulation of mammary cell renewal provides a key to increasing persistency. Investigations to characterize epithelial cells that serve as the proliferative population in the bovine mammary gland have been initiated. Epithelial cells that stain lightly in histological sections are evident through all phases of mammary development and secretion and account for nearly all proliferation in the prepubertal gland. Characterization of these cells may provide a means to regulate mammary cell proliferation and thus to enhance persistency, reduce the effects of mastitis, and decrease the necessity for a dry period.
Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.