Volatile compounds are important components of tea aroma, a key attribute of sensory quality. The present review examines the formation of aromatic volatiles of various kinds of teas and factors influencing the formation of tea volatiles, including tea cultivar, growing environment and agronomic practices, processing method and storage of tea. The determination of tea volatiles and the relationship of active-aroma volatiles with the sensory qualities of tea are also discussed in the present paper.
Traumatic injury to the spinal cord initiates a series of pathological cellular processes that exacerbate tissue damage at and beyond the original site of injury. This secondary damage includes oxidative stress and inflammatory cascades that can lead to further neuronal loss and motor deficits. Microglial activation is an essential component of these secondary signaling cascades. The voltage-gated proton channel, Hv1, functionally expressed in microglia has been implicated in microglia polarization and oxidative stress in ischemic stroke. Here, we investigate whether Hv1 mediates microglial/macrophage activation and aggravates secondary damage following spinal cord injury (SCI). Following contusion SCI, wild-type (WT) mice showed significant tissue damage, white matter damage and impaired motor recovery. However, mice lacking Hv1 (Hv1−/−) showed significant white matter sparing and improved motor recovery. The improved motor recovery in Hv1−/− mice was associated with decreased interleukin-1β, reactive oxygen/ nitrogen species production and reduced neuronal loss. Further, deficiency of Hv1 directly influenced microglia activation as noted by decrease in microglia numbers, soma size and reduced outward rectifier K+ current density in Hv1−/− mice compared to WT mice at 7 d following SCI. Our results therefore implicate that Hv1 may be a promising potential therapeutic target to alleviate secondary damage following SCI caused by microglia/macrophage activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.