The vasodilator-stimulated phosphoprotein (VASP) is associated with actin filaments and focal adhesions, which form the interface between the cytoskeleton and the extracellular matrix. VASP is phosphorylated by both the cAMP-and cGMP-dependent protein kinases in a variety of cells, including platelets and smooth muscle cells. Since both the cAMP and cGMP signalling cascades relax smooth muscle and inhibit platelet activation, it was speculated that VASP mediates these effects by modulating actin filament dynamics and integrin activation. To study the physiological relevance of VASP in these processes, we inactivated the VASP gene in mice. Adult VASP-deficient mice had normal agonist-induced contraction, and normal cAMP-and cGMP-dependent relaxation of intestinal and vascular smooth muscle. In contrast, cAMP-and cGMP-mediated inhibition of platelet aggregation was significantly reduced in the absence of VASP. Other cAMP-and cGMPdependent effects in platelets, such as inhibition of agonist-induced increases in cytosolic calcium concentrations and granule secretion, were not dependent on the presence of VASP. Our data show that two different cyclic, nucleotide-dependent mechanisms are operating during platelet activation: a VASP-independent mechanism for inhibition of calcium mobilization and granule release and a VASP-dependent mechanism for inhibition of platelet aggregation which may involve regulation of integrin function.
Binocular vision requires an exquisite matching of projections from each eye to form a cohesive representation of the visual world. Eye-specific inputs are anatomically segregated, but in register in the visual thalamus, and overlap within the binocular region of primary visual cortex. Here, we show that the transmembrane protein Ten_m3 regulates the alignment of ipsilateral and contralateral projections. It is expressed in a gradient in the developing visual pathway, which is consistently highest in regions that represent dorsal visual field. Mice that lack Ten_m3 show profound abnormalities in mapping of ipsilateral, but not contralateral, projections, and exhibit pronounced deficits when performing visually mediated behavioural tasks. It is likely that the functional deficits arise from the interocular mismatch, because they are reversed by acute monocular inactivation. We conclude that Ten_m3 plays a key regulatory role in the development of aligned binocular maps, which are required for normal vision.
Brevican is a brain-specific proteoglycan which is found in specialized extracellular matrix structures called perineuronal nets. Brevican increases the invasiveness of glioma cells in vivo and has been suggested to play a role in central nervous system fiber tract development. To study the role of brevican in the development and function of the brain, we generated mice lacking a functional brevican gene. These mice are viable and fertile and have a normal life span. Brain anatomy was normal, although alterations in the expression of neurocan were detected. Perineuronal nets formed but appeared to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect. Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles.
Neurocan is a component of the extracellular matrix in brain. Due to its inhibition of neuronal adhesion and outgrowth in vitro and its expression pattern in vivo it was suggested to play an important role in axon guidance and neurite growth. To study the role of neurocan in brain development we generated neurocan-deficient mice by targeted disruption of the neurocan gene. These mice are viable and fertile and have no obvious deficits in reproduction and general performance. Brain anatomy, morphology, and ultrastructure are similar to those of wild-type mice. Perineuronal nets surrounding neurons appear largely normal. Mild deficits in synaptic plasticity may exist, as maintenance of late-phase hippocampal long-term potentiation is reduced. These data indicate that neurocan has either a redundant or a more subtle function in the development of the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.