Although multimodal ultrasound approaches have been suggested to potentially improve the diagnosis of thyroid cancer; the diagnostic utility of the combination of SWE and malignancy-risk stratification systems remains vague due to the lack of standardized criteria. The purpose of the study was to assess the diagnostic value of the combination of grey scale ultrasound assessment using EU TIRADS and shear wave elastography. 121 patients (126 nodules–81 benign; 45 malignant) underwent grey scale ultrasound and SWE imaging of nodules between 0.5 cm and 5 cm prior to biopsy and/or surgery. Nodules were analyzed based on size stratifications: <1 cm (n = 43); 1–2 cm (n = 52) and >2 cm (n = 31) and equivocal cytology status (n = 52), and diagnostic performance assessments were conducted. The combination of EU TIRADS with SWE using the SD parameter; maintained a high sensitivity and significantly improved the specificity of sole EU TIRADS for nodules 1–2 cm (SEN: 72.2% vs. 88.9%, p > 0.05; SPEC: 76.5% vs. 55.9%, p < 0.01) and >2 cm (SEN: 71.4% vs. 85.7%, p > 0.05; SPEC: 95.8% vs. 62.5%, p < 0.01). For cytologically-equivocal nodules; the combination with the SWE minimum parameter resulted in a significant reduction in sensitivity with increased specificity (SEN: 60% vs. 80%; SPEC: 83.4% vs. 37.8%; all p < 0.05). SWE in combination with EU TIRADS is diagnostically efficient in discriminating nodules > 1 cm but is not ideal for discriminating cytologically-equivocal nodules.
Background Thyroid cancer diagnosis has evolved to include computer-aided diagnosis (CAD) approaches to overcome the limitations of human ultrasound feature assessment. This study aimed to evaluate the diagnostic performance of a CAD system in thyroid nodule differentiation using varied settings. Methods Ultrasound images of 205 thyroid nodules from 198 patients were analysed in this retrospective study. AmCAD-UT software was used at default settings and 3 adjusted settings to diagnose the nodules. Six risk-stratification systems in the software were used to classify the thyroid nodules: The American Thyroid Association (ATA), American College of Radiology Thyroid Imaging, Reporting, and Data System (ACR-TIRADS), British Thyroid Association (BTA), European Union (EU-TIRADS), Kwak (2011) and the Korean Society of Thyroid Radiology (KSThR). The diagnostic performance of CAD was determined relative to the histopathology and/or cytology diagnosis of each nodule. Results At the default setting, EU-TIRADS yielded the highest sensitivity, 82.6% and lowest specificity, 42.1% while the ATA-TIRADS yielded the highest specificity, 66.4%. Kwak had the highest AUROC (0.74) which was comparable to that of ACR, ATA, and KSThR TIRADS (0.72, 0.73, and 0.70 respectively). At a hyperechoic foci setting of 3.5 with other settings at median values; ATA had the best-balanced sensitivity, specificity and good AUROC (70.4%; 67.3% and 0.71 respectively). Conclusion The default setting achieved the best diagnostic performance with all TIRADS and was best for maximizing the sensitivity of EU-TIRADS. Adjusting the settings by only reducing the sensitivity to echogenic foci may be most helpful for improving specificity with minimal change in sensitivity.
This study investigated the diagnostic value of the Angio Planewave Ultrasensitive (AngioPLUS) Doppler ultrasound in improving the efficacy of grey scale ultrasound in thyroid nodule diagnosis. The EU TIRADS was used for the grey scale ultrasound assessment of 94 thyroid nodules. conventional Doppler and AngioPLUS Doppler ultrasound images were evaluated using qualitative vascularity grading, where predominant central vascularity indicated malignancy-suspicion, and quantitative regional vascularity assessment, where predominant peripheral vascularity using a ratio vascularity index (RVI) of > 1 indicated benign disease. Diagnostic performance outcomes of sole and combination approaches were calculated based on final pathologic results. Using sole EU TIRADS and AngioPLUS + power Doppler imaging (APDI) based on qualitative vascularity and RVI, the results were a sensitivity of 83.3% vs. 83.3 vs. 66.7% and a specificity of 50% vs. 81.3% vs. 73.4, respectively. EU TIRADS combined with APDI significantly improved the specificity using both qualitative vascularity and RVI assessment approaches (84.4% and 81%, respectively, p < 0.05); and slightly reduced the sensitivity (76.7% and 58.1%). For cytologically-equivocal thyroid nodules, the combination approach using qualitative vascularity assessment outperformed the EU TIRADS (sensitivity: both were 88.9%; specificity: 77.4% vs. 38.7%, p < 0.05; and AUROC: 0.83 vs. 0.62, p < 0.05). APDI combined with EU TIRADS is diagnostically efficient in stratifying thyroid nodules, particularly cytologically-equivocal nodules.
The value of computer-aided diagnosis (CAD) and computer-assisted techniques equipped with different TIRADS remains ambiguous. Parallel diagnosis performances of computer-assisted subjective assessments and CAD were compared based on AACE, ATA, EU, and KSThR TIRADS. CAD software computed the diagnosis of 162 thyroid nodule sonograms. Two raters (R1 and R2) independently rated the sonographic features of the nodules using an online risk calculator while blinded to pathology results. Diagnostic efficiency measures were calculated based on the final pathology results. R1 had higher diagnostic performance outcomes than CAD with similarities between KSThR (SEN: 90.3% vs. 83.9%, p = 0.57; SPEC: 46% vs. 51%, p = 0.21; AUROC: 0.76 vs. 0.67, p = 0.02), and EU (SEN: 85.5% vs. 79%, p = 0.82; SPEC: 62% vs. 55%, p = 0.27; AUROC: 0.74 vs. 0.67, p = 0.06). Similarly, R2 had higher AUROC and specificity but lower sensitivity than CAD (KSThR-AUROC: 0.74 vs. 0.67, p = 0.13; SPEC: 61% vs. 46%, p = 0.02 and SEN: 75.8% vs. 83.9%, p = 0.31, and EU-AUROC: 0.69 vs. 0.67, p = 0.57, SPEC: 64% vs. 55%, p = 0.19, and SEN: 71% vs. 79%, p = 0.51, respectively). CAD had higher sensitivity but lower specificity than both R1 and R2 with AACE for 114 specified nodules (SEN: 92.5% vs. 88.7%, p = 0.50; 92.5% vs. 79.3%, p = 0.02, and SPEC: 26.2% vs. 54.1%, p = 0.001; 26.2% vs. 62.3%, p < 0.001, respectively). All diagnostic performance outcomes were comparable for ATA with 96 specified nodules. Computer-assisted subjective interpretation using KSThR is more ideal for ruling out papillary thyroid carcinomas than CAD. Future larger multi-center and multi-rater prospective studies with a diverse representation of thyroid cancers are necessary to validate these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.