Acidity (pH) plays a key role in the physical and chemical behavior of PM. However, understanding of how specific PM sources impact aerosol pH is rarely considered. Performing source apportionment of PM allows a unique link of sources pH of aerosol from the polluted city. Hourly water-soluble (WS) ions of PM were measured online from December 25th, 2014 to June 19th, 2015 in a northern city in China. Five sources were resolved including secondary nitrate (41%), secondary sulfate (26%), coal combustion (14%), mineral dust (11%), and vehicle exhaust (9%). The influence of source contributions to pH was estimated by ISORROPIA-II. The lowest aerosol pH levels were found at low WS-ion levels and then increased with increasing total ion levels, until high ion levels occur, at which point the aerosol becomes more acidic as both sulfate and nitrate increase. Ammonium levels increased nearly linearly with sulfate and nitrate until approximately 20 μg m, supporting that the ammonium in the aerosol was more limited by thermodynamics than source limitations, and aerosol pH responded more to the contributions of sources such as dust than levels of sulfate. Commonly used pH indicator ratios were not indicative of the pH estimated using the thermodynamic model.
Large reductions of sulfur and nitrogen oxide emissions in the United States have led to considerable improvements in air quality, though recent analyses in the Southeastern United States have shown little response of aerosol pH to these reductions. This study examines the effects of reduced emissions on the trend of aerosol acidity in fine particulate matter (PM), at a nationwide scale, using ambient concentration data from three monitoring networks-the Ammonia Monitoring Network (AMoN), the Clean Air Status and Trends network (CASTNET) and the Southeastern Aerosol Research and Characterization Network (SEARCH), in conjunction with thermodynamic (ISORROPIA-II) and chemical transport (CMAQ) model results. Sulfate and ammonium experienced similar and significant decreases with little change in pH, neutralization ratio ( f = [NH]/2[SO] + [NO]), or nitrate. Oak Grove, MS was the only SEARCH site showing statistically significant pH changes in the Southeast region where small increases in pH (0.003-0.09 pH units/year) were observed. Of the five regions characterized using CASTNET/AMoN data, only California exhibited a statistically significant, albeit small pH increase of +0.04 pH units/year. Furthermore, statistically insignificant (α = 0.05) changes in ammonia were observed in response to emission and PM speciation changes. CMAQ simulation results had similar responses, showing steady ammonia levels and generally low pH, with little change from 2001 to 2011.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.