Profilin-1 (PFN1) is a cytoskeletal protein that regulates the dynamics of actin and microtubule assembly. Thus, PFN1 is essential for the normal division, motility, and morphology of cells. Unfortunately, conventional fusion and direct labeling strategies compromise different facets of PFN1 function. As a consequence, the only methods used to determine known PFN1 functions have been indirect and often deduced in cell-free biochemical assays. We engineered and characterized two genetically encoded versions of tagged PFN1 that behave identical to each other and the tag-free protein. In biochemical assays purified proteins bind to PIP lipids, catalyze nucleotide exchange on actin monomers, stimulate formin-mediated actin filament assembly, and impact microtubule dynamics. Halo-PFN1 or mApple-PFN1 restored morphological and cytoskeletal functions in PFN1-deficient mammalian cells. In biochemical assays, mAp-PFN1 bound tubulin dimers (kD = 1.89 µM) and the sides of microtubules in vitro. Titrations of self-labeling Halo-ligands were used to visualize molecules of PFN1. This approach combined with specific function-disrupting point-mutants (Y6D and R88E) revealed PFN1 bound to microtubules in live cells. Cells expressing the ALS-associated G118V disease variant did not associate with actin filaments or microtubules. Thus, these tagged PFN1s are reliable tools for studying the dynamic interactions of PFN1 with actin or microtubules in vitro as well as in important cell processes or disease-states.
D. tsuruhatensis
is considered a plant growth-promoting rhizobacterium (PGPR), an organic pollutant degradation strain, and an emerging opportunistic pathogen to the human. However, the genetic diversity, the evolutionary dynamics, and the genetic basis of these remarkable traits are still little known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.