Background
Breast cancer anti-estrogen resistance 4 (BCAR4) is closely associated with colorectal cancer (CRC) initiation and propagation. However, the mechanisms underlying BCAR4 function in colon cancer remains largely unknown. In this study, we hypothesized that BCAR4 could regulate colon cancer stem/initiating cells (CSC) function and further facilitates the colon cancer progression.
Methods
qRT-PCR was used to examine the expression of BCAR4 and various CSC markers. FACS, acetaldehyde dehydrogenase (ALDH) activity and western blot assays were applicable to test the expression of CSC markers. CCK8, tumorsphere formation and transwell assays were adopted to examine the capacity of CRC cells proliferation, self-renewal and migration. Pull down assay was used to test the interaction between BCAR4 and miR-665. Luciferase reporter assay was used to examine the interaction of miR-665 and activators of transcription (STAT3). In vivo tumor xenograft study was used to verify the malignancy of CRC cells with inhibition of BCAR4.
Results
Breast cancer anti-estrogen resistance 4 was highly expressed in both CRC cells and stem/initiating cells. In addition, overexpression of BCAR4 facilitated the maintenance of ALDH positive cells (a type of cancer stem/initiating cells) stemness and promoted ALDH+ cells proliferation and migration. Inhibition of BCAR4 restricted ALDH+ cells proliferation and migration. We further proved that miR-665 was the target of BCAR4 and subsequently activated signal transducers and STAT3 signaling which is an important pathway in cancer stem cells self-renewal.
Conclusions
Breast cancer anti-estrogen resistance 4 promotes the CRC cells stemness through targeting to miR-665/STAT3 signaling and identification of the BCAR4 in CRC stem cells provides a new insight into CRC diagnosis, treatment, prognosis and next-step translational investigations.
BCAR4 (Breast Cancer Anti-Estrogen Resistance 4) is a long noncoding RNA that was identified as an oncogene in breast cancer. In our research, we found that the expression level of BCAR4 was upregulated in colon cancer tissues compared to paired normal tissues. What's more, higher BCAR4 expression was correlated with lower survival rate in patients with colon cancer. Mechanistically, we showed that BCAR4 activated Wnt/β-catenin signaling in colon cancer by protecting β-catenin from degradation. We also showed that BCAR4 overexpression promoted cell proliferation and migration in colon cancer. However, silencing BCAR4 inhibited cell growth and promoted apoptosis. Besides, BCAR4 knockdown decreased tumor growth in vivo. These findings indicate that BCAR4 facilitated colon cancer progression by enhancing cell proliferation and inhibiting apoptosis via BCAR4/β-catenin axis. BCAR4 may be a useful new target for treatment of patients with colon cancer.
Background: Cardiovascular diseases are currently the leading cause of death in humans. The high mortality of cardiac diseases is associated with myocardial ischemia and reperfusion (I/R). Recent studies have reported that micro-RNAs (miRNAs) play important roles in cell apoptosis. However, it is not known yet whether miR-141-3p contributes to the regulation of cardiomyocyte apoptosis. It has been well established that in vitro hypoxia/reoxygenation (H/R) model can follow in vivo myocardial I/R injury. This study aimed to investigate the effects of miR-141-3p and CHD8 on cardiomyocyte apoptosis following H/R.
Results:We found that H/R remarkably reduces the expression of miR-141-3p but enhances CHD8 expression both in mRNA and protein in H9c2 cardiomyocytes. We also found either overexpression of miR-141-3p by transfection of miR-141-3p mimics or inhibition of CHD8 by transfection of small interfering RNA (siRNA) significantly decrease cardiomyocyte apoptosis induced by H/R. Moreover, miR-141-3p interacts with CHD8. Furthermore, miR-141-3p and CHD8 reduce the expression of p21.
Conclusion:MiR-141-3p and CHD8 play critical roles in cardiomyocyte apoptosis induced by H/R. These studies suggest that miR-141-3p and CHD8 mediated cardiomyocyte apoptosis may offer a novel therapeutic strategy against myocardial I/R injury-induced cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.