BackgroundThe incidence of malignant melanoma (MM) was occurring at a faster rate than for most neoplasm worldwide, and melanoma metastasis is still the most formidable problem. So it is necessarily to find some biomarkers associated with melanoma metastasis.MethodsIn our study, 8 spontaneous lung metastatic mice models were created by B16F10 subcutaneously transplantation. The differential protein profiles of two kinds of subcutaneous transplanted tumor tissues, which was parental B16F10 (B16 group) and corresponding lung metastases (B16M group) were detected by two-dimensional differential in-gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Western blotting was used to validate the results, and the clinical significance of individual protein was detected furtherly in a set of human samples.ResultIn this study, thirty proteins were found to be differentially expressed (ratio > 2 or < -2, P < 0.01) and thirteen of them were identified by MS. Highly expressed proteins in B16M group included cytoskeleton/structure proteins (vimentin, gamma-actin, β-actin, laminin binding protein), the chaperone family of proteins (heavy-chain binding protein, Bip), immunoproteasome assembly (proteasome activator REG alpha) and others involved in glycolysis activity (PGK1, enolase, TPI, human skeletal muscle GAPDH) and protein transport (myoglobin). Vimentin was significantly up-regulated in B16M group compared with B16 group which was validated by western blotting. Immunohistochemistry was performed in a set of clinical samples, the results showed that over-expression of vimentin was frequently observed in primary melanoma patients with hematogenous metastasis (P < 0.05), not associated with lymph node metastasis (P > 0.05). The presence of TNM stage was a independent indicator of poor prognosis for melanoma patients (P = 0.004).ConclusionThe aberrant immunohistochemical expression of vimentin in primary melanoma tissues may help to call attention for patients with high risk of hematogenous metastasis. That might be as a novel metastatic indicator for melanoma. In a word, vimentin is not only the dignostic marker but also the hematogenous metastasis predictor for melanomas clinically.
Background There is an urgent need for the development of effective noninvasive biomarkers for early pancreatic cancer diagnosis. MicroRNAs (miRNAs) are promising candidates that can be identified in peripheral blood and can act as “liquid biopsy” biomarkers. miR-483-3p is overexpressed in the tumor tissue of pancreatic duct adenocarcinoma, but its potential as noninvasive biomarker remains unknown. Methods We conducted locked nucleic acid in situ hybridization (LNA-ISH) for miR-483-3p in archival tissues of 107 patients with PDAC. We also used immunohistochemistry to evaluate SMAD4 expression, the putative miR-483-3p target gene. miR-483-3p expression level was also assessed using quantitative real-time PCR (qRT-PCR) in serum and serum exosome samples from 63 patients with PDAC and 22 healthy individuals. Results LNA-ISH showed that miR-483-3p was overexpressed in PDAC and PanIN tissues compared to normal pancreatic duct cells. miR-483-3p expression levels correlated with increases in PanIN lesion grade. miR-483-3p expression negatively correlated with Smad4 expression (γ=−0.770, p<0.0001) in PDAC and PanIN tissues. Circulating miR-483-3p levels were significantly elevated in the serum and serum exosomes of PDAC patients compared to healthy controls (p<0.0001 and p<0.01, respectively). Specifically, serum miR-483-3p levels were able to distinguish patients with early stage (≤2cm) PDAC from healthy controls with an AUC of 0.83 [95% CI, 0.70–0.96]. Higher serum exosomal miR-483-3p levels predicted worse survival in PDAC patients and serum exosomal miR-483-3p also proved to be an independent prognostic factor for PDAC (hazard ratio = 3.307; 95% CI=1.104 to 9.903; p=0.033). In vitro studies also showed that miR-483-3p promoted pancreatic cancer cell migration and invasion. Conclusion miR-483-3p overexpression occurs early in PDAC development and is present in premalignant PanIN lesions. Serum miR-483-3p may act as an early PDAC diagnostic biomarker and serum exosomal miR-483-3p may be a PDAC prognostic biomarker.
Objective: The identification of DNA polymerase epsilon (POLE) mutation subtypes in endometrial cancer is critical for molecular classification. The mutation of the POLE gene could only be detected by sequencing until now. We propose to validate and develop the feasibility of using BaseScope, an in situ hybridization (ISH) assay, for the detection of POLE mutations in high-grade endometrioid carcinomas (EC).Methods: Among 51 paraffin-embedded samples of high-grade EC, BaseScope-ISH assays were used to detect the RNA mutation status of the POLE gene, mainly focusing on two hotspot mutations of P286R and V411L. The number of positive signals in the cytoplasm was counted, setting the positive threshold and determining the in situ hybridization results. The sensitivity and specificity of BaseScope-ISH assay were compared with that of the Sanger sequencing results.Results: Based on the BaseScope assay, there were 19 positive samples and 32 negative samples in a total of 51 samples. Of the 19 positive samples, 10 samples showed P286R site mutations in the POLE gene, while the other nine samples were V411L site mutations. Only one sample with the V411L site mutation identified by Sanger sequencing showed negative signal value. The remaining 31 cases without the P286R site mutation or V411L site mutations all showed negative signal. This analysis result showed the sensitivity was 95% and the specificity was 100% for the BaseScope assay detecting POLE mutants in high-grade EC.Conclusion: In the case of high-grade EC, combined with morphological characteristics, the BaseScope assay can effectively and specifically identify POLE mutation cases, providing a reliable foundation for the application of clinical diagnosis and molecular classification.
Background Hepatocellular carcinoma (HCC) often presents with satellite nodules, rendering current curative treatments ineffective in many patients. The heterogeneity of HCC is a major challenge in personalized medicine. The emergence of spatial transcriptomics (ST) provides a powerful strategy for delineating the complex molecular landscapes of tumours. Methods In this study, the heterogeneity of tissue-wide gene expression in tumour and adjacent nonneoplastic tissues using ST technology were investigated. The transcriptomes of nearly 10,820 tissue regions and identified the main gene expression clusters and their specific marker genes (differentially expressed genes, DEGs) in patients were analysed. The DEGs were analysed from two perspectives. First, two distinct gene profiles were identified to be associated with satellite nodules and conducted a more comprehensive analysis of both gene profiles. Their clinical relevance in human HCC was validated with Kaplan–Meier (KM) Plotter. Second, DEGs were screened with The Cancer Genome Atlas (TCGA) database to divide the HCC cohort into high- and low-risk groups according to Cox analysis. HCC patients from the International Cancer Genome Consortium (ICGC) cohort were used for validation. KM analysis was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were applied to determine the independent predictors for OS. Results Novel markers for the prediction of satellite nodules were identified and a tumour clusters-specific marker gene signature model (6 genes) for HCC prognosis was constructed. Conclusion The establishment of marker gene profiles may be an important step towards an unbiased view of HCC, and the 6-gene signature can be used for prognostic prediction in HCC. This analysis will help us to clarify one of the possible sources of HCC heterogeneity and uncover pathogenic mechanisms and novel antitumour drug targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.