Nitrite oxidizing bacteria (NOB) is easy to accumulate in the mainstream anammox process, leading to the decrease of anammox bacterial abundance and deterioration of nitrogen removal. In this study, anammox bacteria was gradually enriched by increasing nitrite production rate under intermittent aeration despite high NOB abundance. With the DO increased from 0.4 to 0.6 mg/L, Nitrosomonas increased from 0.14% to 0.22%, providing more nitrite for anammox bacteria and promoting its enrichment (grew by 77.4%). Adding extra nitrite of 7.14 mg N/(L·h) during the aeration phase to reactor could further increase anammox bacterial abundance by 117.6%, which was higher than the control reactor (40.2%). In contrast, NOB abundance decreased from 1.4 × 1010 to 1.2 × 1010 copies/L. The results suggested that anammox bacteria had a competitive advantage for nitrite over NOB with increasing nitrite production rate. In addition, Thauera and Dechloromonas, which were responsible for reducing nitrate to nitrite, provided additional substrates for anammox bacteria. Overall, this research provides a new idea for mainstream anammox applications.
Practitioner Points
Inhibiting NOB might be no longer necessary and difficult for mainstream anammox.
Anammox bacteria competed for more nitrite with NOB when nitrite production rate increased.
Increasing DO from 0.4 to 0.6 mg/L facilitated anammox bacterial growth and nitrogen removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.