The reuse of rubber in concrete results in two major opposing effects: an enhancement in durability and a reduction in mechanical strength. In order to strengthen the mechanical properties of rubber concrete, steel fibers were added in this research. The compressive strength, the four-point bending strength, the mass loss rate, and the relative dynamic elastic modulus of steel fiber reinforced rubber concrete, subjected to cyclic freezing and thawing, were tested. The effects of the content of steel fibers on the freeze–thaw resistance are discussed. The microstructure damage was captured and analyzed by Industrial Computed Tomography (ICT) scanning. Results show that the addition of 2.0% steel fibers can increase the compressive strength of rubber concrete by 26.6% if there is no freeze–thaw effect, but the strengthening effect disappears when subjected to cyclic freeze–thaw. The enhancement of steel fibers on the four-point bending strength is effective under cyclic freeze–thaw. The effect of steel fibers is positive on the mass loss rate but negative on the relative dynamic elastic modulus.
The macroscopic mechanical properties and frost resistance durability of concrete are closely related to the changes in the internal pore structure. In this study, the two-dimensional and three-dimensional ICT (Industrial Computerized Tomography) pore characteristics of C30 concrete specimens before and after freezing and thawing in clean water, 5 wt.% NaCl, 5 wt.% CaCl2, and 5 wt.% CH3COOK solution environments are obtained through concrete frost resistance durability test and ICT scanning technology. The effects of pore structure changes on concrete frost resistance, durability, and compressive strength mechanical properties after freezing and thawing cycles in different salt solution environments are analyzed. This paper provides new means and ideas for the study of concrete pores. The results show that with the increase in the freezing and thawing times, the concrete porosity, two-dimensional pore area, three-dimensional pore volume, and pore number generally increase in any solution environment, resulting in the loss of concrete compressive strength, mortar spalling, and the decrease in the relative dynamic elastic modulus. Among them, the CH3COOK solution has the least influence on the concrete pore changes; the NaCl solution has the greatest influence on the change in the concrete internal porosity. The damage of CaCl2 solution to concrete is second only to the NaCl solution, followed by clean water. The increase in the concrete internal porosity from high to low is NaCl, CaCl2, clean water, and CH3COOK. The change in the pore volume of 0.1 to 1 mm3 after the freeze–thaw cycle is the main factor for reducing concrete strength. The test results have certain guiding value for the selection of deicing salt in engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.