Humic acid is inexpensive, and has a wide range of sources and a strong adsorption force with the surface of iron ore, and the size of its adsorption force is affected by some factors such as humic acid concentration, pH of the solution, and metal cations. The modified humic acid pellet binder (MHA) with strong adhesion and high viscosity was obtained through the separation and purification of solid wastes such as lignite and weathered coal and chemical modification treatment and successfully applied in the production process of iron ore pellets. After industrial tests, MHA can significantly improve the strength of green and dry pellets, less residue after high-temperature roasting, less metallurgical pollution, high strength of fired pellets, and can partially or completely replace bentonite.
In recent years, with the increase in requirements for horizontal wells, ultra-high depth wells, small wells and branching wells, it has become increasingly important to deal with the conflict between drilling safety and bottomhole friction. In order to meet the requirements of complex boreholes and deepwater drilling processes, it is crucial to improve the performance of ester-based lubricants. Oleic acid esters are relatively stable and have high lubricity at low temperature, however, these can be hydrolyzed at high temperature. However, the structure of carboxylic acids and alcohols can significantly affect the performance of synthetic esters. In order to solve the problem of balancing the high-temperature performance and low temperature performance of oleic acid esters with different structures, we propose a new oleic acid esterification process. After mixing methanol and ethylene glycol, it is reacted with oleic acid, and the mixed oleate prepared is named MEO-21, and the optimal esterification conditions are obtained as follows: the reaction time is 3 h, the reaction temperature is 150 °C, and concentrated sulfuric acid is the catalyst. MEO-21 not only achieves an extreme pressure lubrication coefficient reduction rate (Δf) of 86.57% at room temperature, but maintains a stable performance after hot rolling at high temperatures. Hot rolling at 150 °C for 16 h, Δf was 85.25%, hot rolling at 180 °C for 16 h, Δf was 89.56%. MEO-21 was used as a base oil with other industrial by-product oils to compound and produce a high-temperature-resistant lubricant that was named L-541, L-541′s Δf was 90.39% at room temperature. L-541 was hot-rolling at 120 °C, 150 °C and 180 °C for 16 h, the Δf was stabled at 89%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.