Alternatively activated macrophages (AAMs) play essential roles in the promotion of tissue remodeling, vasculogenesis, and tumor progression; however, the detailed mechanisms underlying the activation of AAMs remain largely unknown. Here, by using quantitative proteomic analysis, we identified 62 proteins that were up-regulated in IL-4-induced macrophages. Among these, Caspase-6 was increased significantly. Caspase-6 is important in the apoptotic signaling pathway; however, its role in non-apoptosis is also reported. Here, we first examined the non-apoptotic role of Caspase-6 in the alternative activation of macrophages after administration of IL-4, 4T1 tumor conditional medium, or co-culture with 4T1 cells. Both treatments promoted alternative activation of RAW264.7 cells and primary macrophages, whereas disruption of caspase-6 expression and activity could markedly suppress the biomarker levels of AAMs. Overexpression of Caspase-6 could significantly promote the activation of AAMs. Importantly, we further present evidence that caspase-6 could regulate breast cancer cell invasion by modulating MMP-2 and MMP-9 expression in 4T1 tumor-associated macrophages, as ablation of protein levels or activity of caspase-6 suppressed tumor cell invasion in vitro. In conclusion, the observed results markedly expanded our views of the dynamic changes in protein composition during alternative activation of macrophages, and they revealed a critical new role of caspase-6 in regulating this cellular biological process, which suggested that caspase-6 might be a key nod molecule to regulate immunological steady-state and be a therapeutic candidate for tumor immunotherapy.
During DNA double strand breaks (DSBs) repair, coordinated activation of phosphatidylinositol 3-kinase (PI3K)-like kinases can activate p53 signaling pathway. Recent findings have identified novel interplays among these kinases demonstrating amplified first p53 pulses under DNA-PK inhibition. However, no theoretical model has been developed to characterize such dynamics. In current work, we modeled the prolonged p53 pulses with DNA-PK inhibitor. We could identify a dose-dependent increase in the first pulse amplitude and width. Meanwhile, weakened DNA-PK mediated ATM inhibition was insufficient to reproduce such dynamic behavior. Moreover, the information flow was shifted predominantly to the first pulse under DNA-PK inhibition. Furthermore, the amplified p53 responses were relatively robust. Taken together, our model can faithfully replicate amplified p53 responses under DNA-PK inhibition and provide insights into cell fate decision by manipulating p53 dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.