Single-nucleus RNA-seq (snRNA-seq) enables the interrogation of cellular states in complex tissues that are challenging to dissociate or are frozen, and opens the way to human genetics studies, clinical trials, and precise cell atlases of large organs. However, such applications are currently limited by batch effects, processing, and costs. Here, we present an approach for multiplexing snRNA-seq, using sample-barcoded antibodies to uniquely label nuclei from distinct samples. Comparing human brain cortex samples profiled with or without hashing antibodies, we demonstrate that nucleus hashing does not significantly alter recovered profiles. We develop DemuxEM, a computational tool that detects inter-sample multiplets and assigns singlets to their sample of origin, and validate its accuracy using sex-specific gene expression, species-mixing and natural genetic variation. Our approach will facilitate tissue atlases of isogenic model organisms or from multiple biopsies or longitudinal samples of one donor, and large-scale perturbation screens.
Single-nucleus RNA-Seq (snRNA-seq) enables the interrogation of cellular states in complex tissues that are challenging to dissociate, including frozen clinical samples. This opens the way, in principle, to large studies, such as those required for human genetics, clinical trials, or precise cell atlases of large organs. However, such applications are currently limited by batch effects, sequential processing, and costs. To address these challenges, we present an approach for multiplexing snRNA-seq, using samplebarcoded antibodies against the nuclear pore complex to uniquely label nuclei from distinct samples. Comparing human brain cortex samples profiled in multiplex with or without hashing antibodies, we demonstrate that nucleus hashing does not significantly alter the recovered transcriptome profiles. We further developed demuxEM, a novel computational tool that robustly detects intersample nucleus multiplets and assigns singlets to their samples of origin by antibody barcodes, and validated its accuracy using gender-specific gene expression, speciesmixing and natural genetic variation. Nucleus hashing significantly reduces cost per nucleus, recovering up to about 5 times as many single nuclei per microfluidc channel. Our approach provides a robust technique for diverse studies including tissue atlases of isogenic model organisms or from a single larger human organ, multiple biopsies or longitudinal samples of one donor, and largescale perturbation screens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.