Background: Stored red blood cell (RBC) transfusion has been shown to enhance the risk of cancer recurrence. However, the underlying mechanism remains unknown. At our lab, we have demonstrated that the extracellular ubiquitin (eUb) released by aged RBCs could promote tumor metastasis in a melanoma mouse model. This study aimed to confirm the pro-tumor effect of eUb on hepatocellular carcinoma (HCC) and explore the related immunoregulatory mechanisms.Methods: Forty HCC tissue specimens and the corresponding adjacent nontumor and normal liver tissues were collected. Two human hepatoma cell lines (MHCC-97H and HepG2.2.15), one murine hepatoma cell line (Hepa1-6), and one human monocyte cell line (THP-1) were adopted in this study. The coculture of hepatoma cells with macrophages was initiated with Transwell inserts. Cell migration in vitro was detected by Transwell and wound-healing assays, while in vivo tumor metastasis was measured by luciferase assay and H&E staining. Macrophage polarization was measured by flow cytometry, immunofluorescence, ELISA, qPCR, and Western blot. Protein expression was detected by Western blot, and immunoprecipitation was used to confirm the interaction between Ub and CXCR4 (CXC chemokine receptor type 4).Results: Ub and CXCR4 were significantly upregulated in HCC tissues, and a positive correlation existed between them. In vitro, the migration of hepatoma cells was not affected by eUb directly, but their metastatic abilities were enhanced after coculture with the macrophages pretreated with eUb. Meanwhile, eUb promoted hepatoma cell metastasis in the lung in vivo and increased the ratio of M2 macrophages in the lung tissues and peripheral blood of tumor-bearing mice. Furthermore, the eUb-induced M2 macrophage polarization was related to the activation of the CXCR4/ERK (extracellular regulated protein kinase) signaling pathway.Conclusions: Extracellular ubiquitin promoted hepatoma metastasis through M2 macrophage polarization via the activation of the CXCR4/ERK signaling pathway, indicating that a personalized transfusion strategy is needed for the treatment of HCC patients. Neutralizing Ub in stored RBC units could lessen the detrimental clinical outcomes induced by the transfusion of stored RBCs.
Bcl-2 family proteins play key roles in the intrinsic apoptosis pathway in platelets, with both pro- and antiapoptotic protein expressions regulating survival during ex vivo storage. We detected a significant decrease in antiapoptotic Bcl-x and increase in proapoptotic Bak expression on the third day of storage and as a result the ratio of Bak:Bcl-x also decreased. Moreover, we identified an interaction between Bcl-x and Bak. These shifts corresponded with activation of the apoptotic pathway, suggesting these proteins might play an important role in platelet survival. We then performed bioinformatic analysis to gain insight into protein expression regulation during storage. This identified a potential binding site of the microRNA (miRNA) let-7b in the 3'-UTR of the Bcl-x gene, which we confirmed by a dual-luciferase reporter assay. We also determined that let-7b was upregulated during platelet storage, and let-7b transfection influenced Bcl-x and Bak protein, but not mRNA, expression. Together, these data suggest that only posttranscriptional mechanisms are available for regulating gene expression in anucleate platelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.