Manganese hexacyanoferrate (MnHCF) is one of the most promising cathode materials for aqueous battery because of its non‐toxicity, high energy density, and low cost. But the phase transition from MnHCF to Zinc hexacyanoferrate (ZnHCF) and the larger Stokes radius of Zn2+ cause rapid capacity decay and poor rate performance in aqueous Zn battery. Hence, to overcome this challenge, a solvation structure of propylene carbonate (PC)‐trifluoromethanesulfonate (Otf)‐H2O is designed and constructed. A K+/Zn2+ hybrid battery is prepared using MnHCF as cathode, zinc metal as anode, KOTf/Zn(OTf)2 as the electrolyte, and PC as the co‐solvent. It is revealed that the addition of PC inhabits the phase transition from MnHCF to ZnHCF, broaden the electrochemical stability window, and inhibits the dendrite growth of zinc metal. Hence, the MnHCF/Zn hybrid co‐solvent battery exhibits a reversible capacity of 118 mAh g−1 and high cycling performance, with a capacity retention of 65.6% after 1000 cycles with condition of 1 A g−1. This work highlights the significance of rationally designing the solvation structure of the electrolyte and promotes the development of high‐energy‐density of aqueous hybrid ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.