Aims: To clone and characterize genes encoding novel cellulases from metagenomes of buffalo rumens. Methods and Results: A ruminal metagenomic library was constructed and functionally screened for cellulase activities and 61 independent clones expressing cellulase activities were isolated. Subcloning and sequencing of 13 positive clones expressing endoglucanase and MUCase activities identified 14 cellulase genes. Two clones carried two gene clusters that may be involved in the degradation of polysaccharide nutrients. Thirteen recombinant cellulases were partially characterized. They showed diverse optimal pH from 4 to 7. Seven cellulases were most active under acidic conditions with optimal pH of 5·5 or lower. Furthermore, one novel cellulase gene, C67‐1, was overexpressed in Escherichia coli, and the purified recombinant enzyme showed optimal activity at pH 4·5 and stability in a broad pH range from pH 3·5 to 10·5. Its enzyme activity was stimulated by dl‐dithiothreitol. Conclusions: The cellulases cloned in this work may play important roles in the degradation of celluloses in the variable and low pH environment in buffalo rumen. Significance and Impact of the Study: This study provided evidence for the diversity and function of cellulases in the rumen. The cloned cellulases may at one point of time offer potential industrial applications.
bCytophaga hutchinsonii is an aerobic cellulolytic soil bacterium which was reported to use a novel contact-dependent strategy to degrade cellulose. It was speculated that cellooligosaccharides were transported into the periplasm for further digestion. In this study, we reported that most of the endoglucanase and -glucosidase activity was distributed on the cell surface of C. hutchinsonii. Cellobiose and part of the cellulose could be hydrolyzed to glucose on the cell surface. However, the cell surface cellulolytic enzymes were not sufficient for cellulose degradation by C. hutchinsonii. An outer membrane protein, CHU_1277, was disrupted by insertional mutation. Although the mutant maintained the same endoglucanase activity and most of the -glucosidase activity, it failed to digest cellulose, and its cellooligosaccharide utilization ability was significantly reduced, suggesting that CHU_1277 was essential for cellulose degradation and played an important role in cellooligosaccharide utilization. Further study of cellobiose hydrolytic ability of the mutant on the enzymatic level showed that the -glucosidase activity in the outer membrane of the mutant was not changed. It revealed that CHU_1277 played an important role in assisting cell surface -glucosidase to exhibit its activity sufficiently. Studies on the outer membrane proteins involved in cellulose and cellooligosaccharide utilization could shed light on the mechanism of cellulose degradation by C. hutchinsonii.
Cytophaga hutchinsonii is a Gram-negative bacterium that can efficiently degrade crystalline cellulose by a unique mechanism different from the free cellulase or cellulosome strategy. In this study, chu_3220, encoding the hypothetical protein CHU_3220 (205 kDa), was identified by insertional mutation and gene deletion as the first gene essential for degradation of the crystalline region but not the amorphous region of cellulose by C. hutchinsonii. A chu_3220 deletion mutant was defective in the degradation of crystalline cellulose and increased the degree of crystallinity of Avicel PH101 but could still degrade amorphous cellulose completely. CHU_3220 was found to be located on the outer surface of the outer membrane and could bind to cellulose. It contains 15 PbH1 domains and a C-terminal domain (CHU_C) that was proved to be critical for the localization of CHU_3220 on the cell surface and the function of CHU_3220 in crystalline cellulose degradation. Moreover, the degradation of crystalline cellulose was intact-cell dependent and inhibited by NaN 3 . Further study showed that chu_3220 was induced by cellulose and that the endoglucanase activity on the cell surface was significantly reduced without chu_3220. Real-time PCR revealed that the transcription of most genes encoding endoglucanases located on the cell surface was decreased in the chu_3220 deletion mutant, indicating that chu_3220 might also play a role in the regulation of the expression of some endoglucanases.IMPORTANCE Cytophaga hutchinsonii could efficiently degrade crystalline cellulose with a unique mechanism without cellulosomes and free cellulases. It lacks proteins that are thought to play important roles in disruption of the crystalline region of cellulose, including exoglucanases, lytic polysaccharide monooxygenases, expansins, expansin-like proteins, or swollenins, and most of its endoglucanases lack carbohydrate binding modules. The mechanism of the degradation of crystalline cellulose is still unknown. In this study, chu_3220 was identified as the first gene essential for the degradation of the crystalline region but not the amorphous region of cellulose. CHU_3220 is a high-molecular-weight protein located on the outer surface of the outer membrane and could bind to cellulose. We proposed that CHU_3220 might be an essential component of a protein complex on the cell surface in charge of the decrystallization of crystalline cellulose. The degradation of crystalline cellulose by C. hutchinsonii was not only dependent on intact cells but also required the energy supplied by the cells. This was obviously different from other known cellulose depolymerization system. Our study has shed more light on the novel strategy of crystalline cellulose degradation by C. hutchinsonii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.