Conventional piezoelectric materials change shape in response to an applied external electric field, frequently deforming at grain boundaries in addition to intrinsic unit cell changes. We detail a computational investigation, using density functional theory (DFT) calculations of single-molecule piezoelectrics. Rather than deforming along covalent bond lengths or angles, these molecular springs, derivatives of [6]helicene and phenanthrene, change conformation in response to the applied field, up to 15% of the molecular length. A substituted [6]helicene has a predicted piezoelectric coefficient of 48.8 pm/V, and one of the phenanthrenes yields a piezoelectric coefficient of up to 54.3 pm/V, which is significantly higher than polymers such as polyvinylidine difluoride (PVDF) and comparable to conventional inorganic materials such as zinc oxide (ZnO). We discuss structural properties that are found to yield large piezoresponse and hypothetical target molecules with up to 64% length change and a predicted piezoelectric coefficient of 272 pm/V. Based on these findings, we believe a new class of highly responsive piezoelectric materials may be created from the "bottom up", yielding immense electromechanical response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.