Dynamic responses of highway bridges induced by wind and stochastic traffic loads usually exceed anticipated values, and tuned mass dampers (TMDs) have been extensively applied to suppress dynamic responses of bridge structures. In this study, a new type of TMD system named pounding tuned mass damper (PTMD) was designed with a combination of a tuned mass and a viscoelastic layer covered delimiter for impact energy dissipation. Comprehensive numerical simulations of the wind/traffic/bridge coupled system with multiple PTMDs (MPTMDs) were performed. The coupled equations were established by combining the equations of motion of both the bridge and vehicles in traffic. For the purpose of comparing the suppressing effectiveness, the parameter study of the different numbers and locations, mass ratio, and pounding stiffness of MPTMDs were studied. The simulations showed that the number of MPTMDs and mass ratio are both significant in suppressing the wind/traffic/bridge coupled vibration; however, the pounding stiffness is not sensitive in suppressing the bridge vibration.
The application of reinforced concrete (RC) beam with near-surface mounted (NSM) pre-stressed carbon fiber reinforced polymer (CFRP) plates has been increasingly widespread in civil engineering. However, debonding failure occurs easily in the early loading stage because of the prestress change at the end of CFRP plate. Therefore, it is important to find reliable, convenient and economical technical means to closely monitor the secure bonding between CFRP and concrete. In this paper, an active sensing approach for generating and sensing stress wave by embedded smart aggregates (SAs) is proposed, which provides a guarantee for the secure connection between CFRP and concrete. Two specimens with different non-pre-stressed bond lengths were fabricated in the laboratory. Six SAs were installed at different positions of the structure to monitor the degree of debonding damage during the loading process. The experiments showed that the optimal length of non-pre-stressed CFRP bond section (300 mm) can significantly improve the load characteristics and enhance the service performance of the structure. The theoretical analysis of wavelet packet shows that increasing the length of non-pre-stressed CFRP bond section can slow down the occurrence and propagation of debonding cracks. The debonding crack in the tension end region is earlier than that in the bond end region. The research results reflect that the developed approach can monitor the damage process caused by debonding cracks and provide early warning for the initial damage and the debonding failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.