Plenty of microRNAs (miRNAs) were discovered at a rapid pace in plants, green algae, viruses and animals. As one of the most important components in the cell, miRNAs play a growing important role in various essential and important biological processes. For the recent few decades, amounts of experimental methods and computational models have been designed and implemented to identify novel miRNA-disease associations. In this review, the functions of miRNAs, miRNA-target interactions, miRNA-disease associations and some important publicly available miRNA-related databases were discussed in detail. Specially, considering the important fact that an increasing number of miRNA-disease associations have been experimentally confirmed, we selected five important miRNA-related human diseases and five crucial disease-related miRNAs and provided corresponding introductions. Identifying disease-related miRNAs has become an important goal of biomedical research, which will accelerate the understanding of disease pathogenesis at the molecular level and molecular tools design for disease diagnosis, treatment and prevention. Computational models have become an important means for novel miRNA-disease association identification, which could select the most promising miRNA-disease pairs for experimental validation and significantly reduce the time and cost of the biological experiments. Here, we reviewed 20 state-of-the-art computational models of predicting miRNA-disease associations from different perspectives. Finally, we summarized four important factors for the difficulties of predicting potential disease-related miRNAs, the framework of constructing powerful computational models to predict potential miRNA-disease associations including five feasible and important research schemas, and future directions for further development of computational models.
In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations.
Recently, a growing number of biological research and scientific experiments have demonstrated that microRNA (miRNA) affects the development of human complex diseases. Discovering miRNA-disease associations plays an increasingly vital role in devising diagnostic and therapeutic tools for diseases. However, since uncovering associations via experimental methods is expensive and time-consuming, novel and effective computational methods for association prediction are in demand. In this study, we developed a computational model of Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction (MDHGI) to discover new miRNA-disease associations by integrating the predicted association probability obtained from matrix decomposition through sparse learning method, the miRNA functional similarity, the disease semantic similarity, and the Gaussian interaction profile kernel similarity for diseases and miRNAs into a heterogeneous network. Compared with previous computational models based on heterogeneous networks, our model took full advantage of matrix decomposition before the construction of heterogeneous network, thereby improving the prediction accuracy. MDHGI obtained AUCs of 0.8945 and 0.8240 in the global and the local leave-one-out cross validation, respectively. Moreover, the AUC of 0.8794+/-0.0021 in 5-fold cross validation confirmed its stability of predictive performance. In addition, to further evaluate the model's accuracy, we applied MDHGI to four important human cancers in three different kinds of case studies. In the first type, 98% (Esophageal Neoplasms) and 98% (Lymphoma) of top 50 predicted miRNAs have been confirmed by at least one of the two databases (dbDEMC and miR2Disease) or at least one experimental literature in PubMed. In the second type of case study, what made a difference was that we removed all known associations between the miRNAs and Lung Neoplasms before implementing MDHGI on Lung Neoplasms. As a result, 100% (Lung Neoplasms) of top 50 related miRNAs have been indexed by at least one of the three databases (dbDEMC, miR2Disease and HMDD V2.0) or at least one experimental literature in PubMed. Furthermore, we also tested our prediction method on the HMDD V1.0 database to prove the applicability of MDHGI to different datasets. The results showed that 50 out of top 50 miRNAs related with the breast neoplasms were validated by at least one of the three databases (HMDD V2.0, dbDEMC, and miR2Disease) or at least one experimental literature.
Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively integrate diverse datasets and make reliable predictions. In this study, we presented a computational model named Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected miRNAs/diseases’ statistical feature profile and graph theoretical feature profile to a common subspace. It used Laplacian regularization to preserve the local structures of the training data and a L1-norm constraint to select important miRNA/disease features for prediction. The strength of dimensionality reduction enabled the model to be easily extended to much higher dimensional datasets than those exploited in this study. Experimental results showed that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model’s superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross validation justified its accuracy and stability. In addition, three types of case studies further demonstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma, Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would be a valuable computational tool for miRNA-disease association prediction.
Introduction Early and precise diagnosis and staging of gastric cancer are important for its treatment and management. However, the low sensitivity of 18 F-uorodeoxyglucose ( 18 F-FDG) for gastric cancer diagnosis limits its application. Currently, the tracer 68 Ga-FAPI, which targets broblast activation protein (FAP), is widely used to diagnose various cancers. However, the diagnostic value of 68 Ga-FAPI in gastric cancer is still unclear. In this study, we aimed to investigate the potential advantage of 68 Ga-FAPI-04 over 18 F-FDG in the evaluation of gastric cancer.Methods: Thirty-eight patients with gastric cancer (31 with adenocarcinoma and 7 with signet ring cell carcinoma) were recruited for this study. All of the participants underwent 68 Ga-FAPI-04 and 18 F-FDG imaging by positron emission tomography (PET)/computed tomography (CT) or PET/magnetic resonance (MR). The results were interpreted by two experienced nuclear medicine physicians, and the maximum standardized uptake value (SUV max ) was calculated.Results: For the detection of primary gastric cancer, the sensitivities of 68 Ga-FAPI-04 PET and 18 F-FDG PET were 100% (38/38) and 81.6% (31/38), respectively. Four cases of adenocarcinoma and three cases of signet ring cell carcinoma were missed by 18 F-FDG PET. The SUV max of 68 Ga-FAPI-04 in tumors greater than 4 cm (11.0 ± 4.5) was higher than tumors less than 4 cm (4.5 ± 3.2) (P = 0.0015). The SUV max of 68 Ga-FAPI-04 was higher in T2-4 tumors (9.7 ± 4.4) than in T1 tumors (3.1 ± 1.5) (P = 0.0002). For the detection of metastatic lesions, the sensitivities of 68 Ga-FAPI-04 PET and 18 F-FDG PET in 10 patients with regional lymph node metastasis and distant metastasis were 6/10 and 5/10, respectively. Conclusion: Compared to 18 F-FDG PET, 68 Ga-FAPI-04 PET had superior potential in detecting primary gastric cancers and metastatic lymph nodes, 68 Ga-FAPI-04 PET also had a better performance on small gastric cancer detection. 68 Ga-FAPI-04 PET could provide better performance for gastric cancer diagnosis and staging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.