The high enthalpy nozzle converts the high enthalpy stagnation gas into the hypervelocity free flow. The flow region of the high enthalpy nozzle consists of three parts: an equilibrium region upstream of the throat, a non-equilibrium region near the throat, and a frozen region downstream of the throat. Here we propose to consider the thermochemical non-equilibrium scale effects in the high enthalpy nozzle. By numerically solving axisymmetric compressible Navier-Stokes equations coupling with Park's two-temperature model, the fully non-equilibrium solution is employed throughout the entire nozzle. Calculations are performed at different stagnation conditions with the different absolute scales and expansion ratio. The results of this study are twofold. Firstly, as the absolute scale and expansion ratio increase, the freezing position is delayed, and the flow approaches equilibrium. Secondly, the vibrational temperature and Mach number decrease with the increase in the nozzle scale and expansion ratio, while the speed of sound, static pressure, and translational temperature increase as the nozzle scale and expansion ratio increase.
The “left-behind” phenomenon occurs frequently in Urban Rail Transit (URT) networks with booming travel demand, especially during peak hours in a complex URT network, which makes passenger travel patterns more complicated. This paper proposes a methodology to mine passenger travel patterns based on fare transaction records from automatic fare collection (AFC) systems and Automatic Vehicle Location (AVL) data from Communication Based Train Control (CBTC) Systems or tracking systems. By introducing the concept of a sequence, a space-time-sequence trajectory model is proposed to simulate a passenger’s travel activities, including when they are left-behind. The paper analyzes passenger travel trajectory links and estimates the weight of each feasible trajectory under tap-in/tap-out constraints. The station time parameters, including access/egress and transfer walking-time parameters, are important inputs for the model. The paper also presents a maximum-likelihood approach to estimate these parameters from AFC transaction data and AVL data. The methodology is applied to a case study using AFC and AVL data from the Beijing URT network during peak hours to test the proposed model and algorithm. The estimation results are consistent with the results obtained from the authorities, and this finding verifies the feasibility of our approach.
The manufacturing development of axial piston pumps usually takes the trend of high speed and miniaturization, and increases power density. Axial piston pumps are usually characterized as high speed to improve the power density; thus, high-speed churning losses caused by the internal rotating components stirring the oil can increase significantly. In order to improve the efficiency, more attention should be given to the churning losses in axial piston pumps, especially in high-speed conditions. Using the method of least-squares curve fitting, this paper establishes a series of formulas based on the churning losses test rig over a wide range of speeds, which enable accurate predictions of churning losses on the cylinder block and pistons. The reduction coefficient of flow resistance of multi-pistons as calculated. The new churning losses formula devoted to the cylinder block and rotating pistons was validated by comparison with experimental evidence in different geometries of axial piston pumps. According to the prediction model of churning losses, some valuable guidance methods are proposed to reduce the energy losses of the axial piston pump, which are the theoretical support for the miniaturization of axial piston pump manufacturing.
Raising the rotational speed of an axial piston pump is useful for improving its power density; however, the churning losses of the piston increase significantly with increasing speed, and this reduces the performance and efficiency of the axial piston pump. Currently, there has been some research on the churning losses of pistons; however, it has rarely been analyzed from the perspective of the piston number. To improve the performance and efficiency of the axial piston pump, a computational fluid dynamics (CFD) simulation model of the churning loss was established, and the effect of piston number on the churning loss was studied in detail. The simulation analysis results revealed that the churning losses initially increased as the number of pistons increased; however, when the number of pistons increased from six to nine, the torque of the churning losses decreased because of the hydrodynamic shadowing effect. In addition, in the analysis of cavitation results, it was determined that the cavitation area of the axial piston pump was mainly concentrated around the piston, and the cavitation became increasingly severe as the speed increased. By comparing the simulation results with and without the cavitation model, it was observed that the cavitation phenomenon is beneficial for the reduction of churning losses. In this study, a piston churning loss test rig that can eliminate other friction losses was established to verify the accuracy of the simulation results. A comparative analysis indicated that the simulation results were consistent with the actual situation. In addition, this study also conducted a simulation study on seven and nine piston pumps with the same displacement. The simulation results revealed that churning losses of the seven pistons were generally greater than those of the nine pistons under the same displacement. In addition, regarding the same piston number and displacement, reducing the pitch circle radius of piston bores is effective in reducing the churning loss. This research analyzes the effect of piston number on the churning loss, which has certain guiding significance for the structural design and model selection of axial piston pumps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.