Aim: The goal of this work is to understand the cellular effects of advanced glycation end product (AGE)-modified protein on renal proximal tubule cells. Background: A major function of the proximal tubule is to reabsorb and process filtered proteins. Diabetes is characterized by increased quantities of tissue and circulating proteins modified by AGEs. Therefore in diabetes, plasma proteins filtered at the glomerulus and presented to the renal proximal tubule are likely to be highly modified by AGEs. Methods: The model system was electrically resistant polarized renal proximal tubular epithelial cells in monolayer culture. The model proteins comprise a well-characterized AGE, methylglyoxal-modified bovine serum albumin (MGO-BSA), and unmodified BSA. Results: Renal proximal tubular cells handle MGO-BSA and native BSA in markedly disparate ways, including differences in: (1) kinetics of binding, uptake, and intracellular accumulation, (2) processing and fragmentation, and (3) patterns of electrical conductance paralleling temporal changes in binding, uptake and processing. Conclusion: These differences support the idea that abnormal protein processing by the renal tubule can be caused by abnormal proteins, thereby forging a conceptual link between the pathogenic role of AGEs and early changes in tubular function that can lead to hypertrophy and nephropathy in diabetes.
Alzheimer's disease (AD) is characterized by two pathological features: neurofibrillary tangles (NFTs), formed by microtubule-associated protein tau, and abnormal accumulation of amyloid-β (Aβ). Multiple evidence placed synaptic tau as the vital fact of AD pathology, especially at the very early stage of AD. In the present review, we discuss tau phosphorylation, which is critical for the dendritic localization of tau and synaptic plasticity. We review the related kinases and phosphatases implicated in the synaptic function of tau. We also review the synergistic effects of these kinases and phosphatases on tau-associated synaptic deficits. We aim to open a new perspective on the treatment of AD.
Background: Amyloid plaques and neurofibrillary tangles are two pathological hallmarks of Alzheimer’s disease (AD). However, synaptic deficits occur much earlier and correlate stronger with cognitive decline than amyloid plaques and neurofibrillary tangles. Mislocalization of tau is an early hallmark of neurodegeneration and precedes aggregations. Sirtuin type 1 (SIRT1) is a deacetylase which acts on proteins including transcriptional factors and associates closely with AD. Objective: The present study investigated the association between SIRT1 and tau expression in cells and in mice brains. Methods: Western blot was performed to detected tau, SIRT1, C/EBPα, and GAPDH protein levels. Immunological fluorescence assay was used to assess tau localization in primary cortical neuronal cells. Golgi staining was performed to evaluated dendritic spine morphology in mice brains. Results: In the present study, we found that SIRT1 negatively regulates expression of tau at the transcriptional level through transcriptional factor C/EBPα. Inhibition of the activity of SIRT1 limits the distribution of tau to the neurites. In the meantime, the alteration of dendritic spine morphology is also observed in the brains of SIRT1+/– mice. Conclusion: SIRT1 may be a potential drug target for early intervention in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.