Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal—Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.
Background There is growing literature suggesting a link between vitamin D and asthma lung function, but the results from systematic reviews are conflicting. We conducted this meta-analysis to investigate the relation between serum vitamin D and lung function in asthma patients. Methods Major databases, including OVID, MEDLINE, Web of Science and PUBMED, were searched until 10th October 2018. All published observational studies related to vitamin D and asthma were extracted. All meta-analyses were performed using Review Manager 5.3.5. Results This quantitative synthesis found that asthma patients with low vitamin D levels had lower forced expiratory volume In 1 s (FEV1) (mean difference (MD) = − 0.1, 95% CI = − 0.11 to − 0.08,p < 0.01;I2 = 49%, p = 0.12) and FEV1% (MD = − 10.02, 95% CI = − 11 to − 9.04, p < 0.01; I2 = 0%, p = 0.82) than those with sufficient vitamin D levels. A positive relation was found between vitamin D and FEV1 (r = 0.12, 95% CI = 0.04 to 0.2, p = 0.003; I2 = 59%,p = 0.01), FEV1% (r = 0.19, 95% CI = 0.13 to 0.26, p < 0.001; I2 = 42%, p = 0.11), forced vital capacity (FVC) (r = 0.17, 95% CI = 0.00 to 0.34, p = 0.05; I2 = 60%, p = 0.04), FEV1/FVC (r = 0.4, 95% CI = 0.3 to 0.51, p < 0.001; I2 = 48%, p = 0.07), and the asthma control test (ACT) (r = 0.33, 95% CI = 0.2 to 0.47, p < 0.001; I2 = 0%, p = 0.7). Subgroup analysis indicated that the positive correlation between vitamin D and lung function remained significant in both children and adults. Conclusions Our meta-analysis suggested that serum vitamin D levels may be positively correlated with lung function in asthma patients. Future comprehensive studies are required to confirm these relations and to elucidate potential mechanisms.
One-dimensional local Dirichlet spaces associated with linear diffusions are studied. The first result is to give a representation for any 1-dim local, irreducible and regular Dirichlet space. The second result is a necessary and sufficient condition for a Dirichlet space to be regular subspace of another Dirichlet space.
Waddington's epigenetic landscape is an abstract metaphor frequently used to explain cell fate decisions. Recent advances in single-cell genomics are altering our understanding of the Waddington landscape. Yet, the molecular regulations behind remain poorly understood. We construct a dynamic cell landscape of mouse lineage differentiation at the single-cell level and thereby reveal both lineage-common and lineage-specific regulatory programs during cell type maturation. We verify lineage-common regulatory programs that are universal during the development of invertebrates and vertebrates. In particular, we identify Xbp1 as an evolutionarily conserved regulator of cell fate determinations across different species. We demonstrate that Xbp1 transcriptional regulation is important for the stabilization of the genetic network for a wide range of cell types. Our results offer genetic and molecular insights into the gene regulatory programs systematically and provide resources to advance the understanding of the cell fate decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.