We report on the study of moving filaments in a honeycomb pattern in a dielectric barrier discharge system using photomultipliers, a high-speed video camera, and a spectrometer. The honeycomb pattern bifurcates from the hexagonal super-lattice pattern with increasing voltage. It is found that the honeycomb framework is composed of filaments with irregular reciprocating motion, which indicates that the honeycomb framework results from statistical self-organization. The spatiotemporal dynamics show that the pattern consists of three different sub-lattices. The plasma parameters (molecular vibrational temperature and electron density) of the pattern, determined from the optical emission spectra, show that different sub-lattices are in different plasma states. Based on these measurements, the mechanism of the movement of filaments is analyzed briefly.
The compound orthorhombic lattice pattern which is composed of the bright spot and the dim spot is observed for the first time in a dielectric barrier discharge system. It is found that the dim spot is located at the gravity center of the surrounding three bright spots. The discharge bifurcates from a square lattice, hexagon pattern to compound orthorhombic lattice pattern and finally changes to an irregular pattern. The phase diagram of the pattern types as a function of the applied voltage and the argon concentration is given. The spatio-temporal dynamics of the pattern is studied by the time correlation measurement and the high speed video camera images. Results show that the dim spot is formed by both volume discharge and surface discharge induced by the bright spot. The differences of plasma parameters between the bright spots and the dim spots obtained by optical emission spectroscopy verify that the dim spot is formed by both volume discharge and surface discharge. To better understand the mechanism of firing of the dim spots for the same conditions as in the first phase diagram, the phase diagram of the mechanism of firing of the dim spots as a function of the gas pressure and the argon concentration is given. The simulation of the electric fields of wall charges accumulated by bright spots further verifies that the bright spot has an effect on the formation of dim spot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.