Nonlinear waves on periodic backgrounds play an important role in physical systems. In this study, nonlinear waves that include solitons, breathers, rogue waves, and semi-rational solutions on periodic backgrounds for the coupled Lakshmanan-Porsezian-Daniel equations are investigated. Moreover, the interactions between different types of nonlinear waves are examined and their dynamic behaviors are studied. In particular, it is observed that bright-dark rogue waves interact with bright-dark breathers or solitons on periodic backgrounds, four-petaled breathers interact with two eye-shaped breathers on periodic backgrounds, and a four-petal rogue wave interplays with a rogue wave on periodic backgrounds. Furthermore, it is found that the value of the parameter 𝜸 3 affects the weak and strong interactions of these nonlinear waves. These results may be useful in the study of nonlinear wave dynamics in coupled nonlinear wave models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.