High-performance quantum memory for quantized states of light is a prerequisite building block of quantum information technology. Despite great progresses of optical quantum memories based on interactions of light and atoms, physical features of these memories still cannot satisfy requirements for applications in practical quantum information systems, since all of them suffer from trade-off between memory efficiency and excess noise. Here, we report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell in which a scheme of optimizing the spatial and temporal modes based on the time-reversal approach is applied. The memory efficiency up to 67 ± 1% is directly measured and a noise level close to quantum noise limit is simultaneously reached. It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities. Thus the realized quantum memory platform has been capable of preserving quantized optical states, and is ready to be applied in quantum information systems, such as distributed quantum logic gates and quantum-enhanced atomic magnetometry.
Multipartite Einstein-Podolsky-Rosen (EPR) steering is a key resource in a quantum network. Although EPR steering between spatially separated regions of ultracold atomic systems has been observed, deterministic manipulation of steering between distant quantum network nodes is required for a secure quantum communication network. Here, we propose a feasible scheme to deterministically generate, store, and manipulate one-way EPR steering between distant atomic cells by a cavity-enhanced quantum memory approach. While optical cavities effectively suppress the unavoidable noises in electromagnetically induced transparency, three atomic cells are in a strong Greenberger-Horne-Zeilinger state by faithfully storing three spatially separated entangled optical modes. In this way, the strong quantum correlation of atomic cells guarantees one-to-two node EPR steering is achieved, and can perserve the stored EPR steering in these quantum nodes. Furthermore, the steerability can be actively manipulated by the temperature of the atomic cell. This scheme provides the direct reference for experimental implementation for one-way multipartite steerable states, which enables an asymmetric quantum network protocol.
We experimentally demonstrated the formation of a one-dimensional electromagnetically induced optical lattice in coherently prepared three-level 85Rb Rydberg atomic vapors with electromagnetically induced transparency (EIT). The one-dimensional photonic lattice was optically induced by a coupling field with a spatially periodical intensity distribution deriving from the interference of two strong Gaussian beams from the same laser source (~480 nm). Under the Rydberg-EIT condition, the incident weak probe beam can feel a tunable spatially modulated susceptibility, which is verified by the controllable discrete diffraction pattern observed at the output plane of the vapor cell. This investigation not only opens the door for experimentally introducing the strong interaction between Rydberg atoms to govern the beam dynamics in photonic lattices based on atomic coherence but also provides an easily accessible periodic environment for exploring Rydberg-atom physics and related applications.
For quantum on-demand storage and retrieval of nonclassical light, the memory noise at shot noise limit is a necessary condition. And an optical filter is widely used to filter out the strong control mode when the signal mode is maintained. Thus we construct and analyze an etalon filter with the planar monolithic geometry. The signal mode resonant with the etalon is selected and the unwanted modes are filtered out by precisely controlling the etalon temperature. The noise suppression factor for control mode is 0.053 while the transmissivity for signal mode is 97% with a fluctuation of 1.7% within 30 min.Our analysis can provide a direct reference for optimizing the performance of quantum memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.