Most two-dimensional (2D) covalent organic frameworks (COFs) are non-fluorescent in the solid state even when they are constructed from emissive building blocks. The fluorescence quenching is usually attributed to non-irradiative rotation-related or π–π stacking-caused thermal energy dissipation process. Currently there is a lack of guiding principle on how to design fluorescent, solid-state material made of COF. Herein, we demonstrate that the eclipsed stacking structure of 2D COFs can be used to turn on, and tune, the solid-state photoluminescence from non-emissive building blocks by the restriction of intramolecular bond rotation via intralayer and interlayer hydrogen bonds among highly organized layers in the eclipse-stacked COFs. Our COFs serve as a platform whereby the size of the conjugated linkers and side-chain functionalities can be varied, rendering the emission colour-tuneable from blue to yellow and even white. This work provides a guide to design new solid-state emitters using COFs.
Two-dimensional covalent organic framework (COF) materials can serve as excellent candidates for gas storage due to their high density of periodically arranged pores and channels, which can be tethered with functional groups. However, post-functionalization tends to disturb the structure of the COF; thus, it is attractive to develop synthetic approaches that generate built-in functionalities. Herein, we develop a new strategy for the construction of 2D-COFs with built-in, unreacted periodic bonding networks by solventdirected divergent synthesis. Tetraphenylethane (TPE), which combines both π-rigidity for stacking and rotational flexibility, is selected as the central core for COF construction. By solvent control, two distinct COF structures could be constructed, arising from a [4 + 4] condensation pathway (TPE-COF-I) or an unusual [2 + 4] pathway (TPE-COF-II). TPE-COF-II contains unreacted linker units arranged around its pores and shows greatly enhanced carbon dioxide adsorption performance (23.2 wt %, 118.8 cm 3 g −1 at 1 atm, 273 K), which is among the best COF materials for CO 2 adsorption reported to date.
Covalent organic frameworks are an emerging class of porous crystalline organic materials that can be designed and synthesized from the bottom up. Despite progress made in synthesizing COFs of diverse topologies, the synthesis methods are often tedious and unscalable, hampering practical applications. Herein, we demonstrate a scalable, robust method of producing highly crystalline acylhydrazone two-dimensional (2D) COFs with diversified structures (six examples) under open and stirred conditions, with growth typically completed in only 30 min. Our strategy involves selecting molecular building blocks that have bond dipole moments with spatial orientations that favor antiparallel stacking and whose structure allows the restriction of intramolecular bond rotation (RIR) via intra-and interlayer hydrogen bonding. This method is widely applicable for hydrazide linkers containing various side-chain functionalities and topicities. By this strategy, the gram-scale synthesis of two highly crystalline COFs (up to 1.4 g yield) was obtained in a one-pot reaction within 30 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.