Under the condition of ten different incident energies ranging from 3 eV to 80 eV above the ionization potential of helium and the outgoing electrons having equal energies, by making use of 3C model and modified 3C model, the triple differential cross sections of electron-impact single ionization of the ground state of helium in the perpendicular geometry are calculated. The result is compared with corresponding experimental result to systematically investigate the influences of various screening effects on the triple differential cross sections for helium. The collision mechanisms of the triple differential cross sections are explored. The result shows that the effects of dynamic screening in the final state can directly affect the structures of the triple differential cross sections at lower incident energy, which will unavoidably affect the angular distribution and relative amplitude of side peaks at angles =90 and =270. The screening effects of residual electron in the final state of He+ have a similar significant effect on the amplitude of triple differential cross section of helium and angular distributions and relative amplitudes of side peaks at angles =90 and =270. When the incident energy is over 84.6 eV, the screening effect of residual electron in the final state of He+ has a slight effect on the amplitude of triple differential cross section, which can be overlooked. But the effects of dynamic screening in the final state on side peaks at angles =90 and =270 need considering. In addition, by taking advantage of DS3C-Z model, the results of collision mechanism of various peaks at angles =180, =90 and =270 show that the middle peak at angle =180 is produced by a process called triple scattering mechanism and then the side peaks at angles =90 and =270 are produced by a process called double scattering mechanism. Such a collision mechanism has a direct influence on the generation and variation law of triple differential cross sections.
The double differential cross sections for electron impact ionization of hydrogen at incident energies of 15.6 eV, 17.6 eV, 25 eV and 40 eV are calculated by use of BBK model and modified BBK model. The results of the present work are compared with the absolute experimental date. The structure of the cross sections is analysed and the contributions of exchange effects to corss sections are discussed.
The triple differential cross section for electron impact ionization of helium in the perpendicular geometry is calculated by use of BBK model and modified BBK model. The results of the present work are compared with experimental data. The structure of the cross section is analysed and the exchange effects are discussed systematically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.