Disturbance of immunity is an important factor to modulate inflammatory responses after severe shock. Post-shock mesenteric lymph (PSML) return plays an adverse role in multiple organ injuries induced by the hemorrhagic shock, and the inflammatory factors are involved in this process. However, whether the PSML can exacerbate immune dysfunctions that modulate inflammatory response to the hemorrhagic shock remains unknown. In the present study, the effects of PSML drainage on the distribution of T lymphocyte subgroup, the release of inflammatory factors, and apoptosis of thymocytes were investigated; the effect of PSML on the specific parameters of cellular immune function was also determined. Results showed that PSML drainage reduced the increased levels of CD3+, CD3+CD4+, CD4+CD25+ lymphocytes, IFN-γ, and the ratios of CD3 + CD4+/CD3 + CD4- in blood of the shocked rats at 3 h after resuscitation; PSML drainage also abolished the decreased IL-4 level and restored the higher ratio of IFN-γ/IL-4 to normal levels. Tissue injury, including enlarged intermembrance space and edema with congestion in the medulla, increased apoptotic cells and bax expression, decreased number of cells in the S phase, and bcl-2 expression were observed in the thymus after hemorrhagic shock. PSML drainage reversed these effects. In particular, PSML drainage increased the proliferation index and decreased p53 expression of thymocytes. These results suggest that hyperimmunity occurred at early stages of hemorrhagic shock with resuscitation and that PSML drainage could markedly improve cellular immune function that is responsible for the reduced inflammatory responses.
PURPOSE:This study was conducted to investigate the effect of normal mesenteric lymph (NML) from mice on the spleen injury induced by lipopolysaccharide (LPS) challenge. METHODS:Mice in the LPS and LPS+NML groups received an intraperitoneal injection of LPS (35 mg/kg) and kept for 6 h.. The mice in the LPS+NML group received NML treatment at 1 h after LPS injection. Afterward, the splenic morphology, the levels of lipopolysaccharide-binding protein (LBP), cluster of differentiation 14 (CD14), phosphorylation mitogen-activated protein kinases (MAPKs), and inflammatory mediators in splenic tissue were investigated. RESULTS: LPS injection induced spleen injury, increased the levels of LBP, CD14, tumor necrosis factor-α (TNF-α), interleukin 6(IL-6), and interferon γ (IFN-γ), and decreased the IL-4 content in the spleen. By contrast, NML treatment reversed these changes.Meanwhile, the LPS challenge decreased the phosphorylation levels of p38 MAPK, extracellular regulated protein kinases 1/2, and c-Jun N-terminal kinase (JNK). Moreover, the phosphorylation levels of p38 MAPK and JNK were further decreased by the NML administration.CONCLUSION: rRdThe normal mesenteric lymph treatment alleviated lipopolysaccharide induced spleen injury by attenuating LPS sensitization and production of TNF-α, IL-6, and IFN-γ.
Dendritic cell (DC)–mediated immune dysfunction is involved in the process of severe hemorrhagic shock that leads to sepsis. Although post–hemorrhagic shock mesenteric lymph (PHSML) induces immune organs injuries and apoptosis, whether PHSML exerts adverse effects on splenic DCs remains unknown. In this study, we established a hemorrhagic shock model (40 ± 2 mm Hg for 60 min) followed by fluid resuscitation with the shed blood and equal Ringer's solution and drained the PHSML after resuscitation. At 3 h after resuscitation, we harvested the splenic tissue to isolate DCs using anti-CD11c immunomagnetic beads and then detected the necrotic and apoptotic rates in splenocytes and splenic DCs. We also detected the levels of TNF-α, IL-10, and IL-12 in the culture supernatants and surface marker expressions of MHC-II, CD80, and CD86 of splenic DCs following LPS stimulation for 24 h. Second, we purified the DCs from splenocytes of normal mice to investigate the effects of PHSML treatment on cytokine production and surface marker expression following LPS stimulation. The results showed that PHSML drainage attenuated LPS-induced cell death of splenocytes and DCs. Meanwhile, PHSML drainage enhanced the DC percentage in splenocytes and increased the TNF-α and IL-12 production by DCs and the expressions of CD80, CD86, and MHCII of DCs treated by LPS. Furthermore, PHSML treatment reduced the productions of TNF-α, IL-10, and IL-12 and the expressions of CD80 and CD86 in normal DCs after treatment with LPS. In summary, the current investigation demonstrated that PHSML inhibited the cytokine production and surface marker expressions of DCs stimulated by LPS, suggesting that PHSML plays an important role in hemorrhagic shock–induced immunosuppression through the impairment of DC function and maturation.
Objective:To study the expressions of metallothionein and the significances in cervical squamous cell cancer (CSC), bladder transitional cell cancer (BTC), esophageal squamous cell cancer (ESC), gastral tubular adenocarcinoma (GC) and large intestinal tubular adenocarcinoma (LIC). Methods: Immunohistochemical method was used to examine the expression rates of MT in five types of cancer tissue. Results: The expression rates of MT were 75.00% (24/32) in ESC, 52.27% (46/88) in GTC, 59.46% (44/74) in LIC, 64.86% (48/74) in BTC and 58.57% (41/70) in CSC respectively. The positive rates of MT expression were higher in low differentiation and deep muscular group than those in medium or high differentiation and superficial muscular invasion group (P<0.05). Conclusion: The expression of MT is related to differentiation degree and invasion degree.The metallothionein (MT) is a protein of small molecular with much sulfydryl. It forms Zn-MT, Cd-MT, Cu-MT, and Pt-MT when combined with Zn, Cd, Cu and Pt [1] . MT has metal stable diathesis and free redical resisting function [2][3][4] . Abnormally increased MT is related to the genesis, development and drug-resistance of tumor [5,6] . We collected 330 cases of tumors from five types of organs to examine the expression of MT with streptavidin peroxidase (SP) immunohistochemical method, to clarify the relation between the expression of MT and the biology characteristics of tumor, and to offer a base of establishing chemistry treatment project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.