SINA (Seven in absentia) proteins are a small family of ubiquitin ligases that play important roles in regulating plant growth and developmental processes as well as in responses to diverse types of biotic and abiotic stress. However, the characteristics of the apple SINA family have not been previously studied. Here, we identified 11 MdSINAs members in the apple genome based on their conserved, N-terminal RING and C-terminal SINA domains. We also reconstructed a phylogeny of these genes; characterized their chromosomal location, structure, and motifs; and identified two major groups of MdSINA genes. Subsequent qRT-PCR analyses were used to characterize the expression of MdSINA genes in various tissues and organs, and levels of expression were highest in leaves. MdSINAs were significantly induced under ABA and carbon-and nitrate-starvation treatment. Except for MdSINA1 and MdSINA7, the other MdSINA proteins could interact with each other. Moreover, MdSINA2 was found to be localized in the nucleus using Agrobacterium-mediated transient expression. Western-blot analysis showed that MdSINA2 accumulated extensively under light, decreased under darkness, and became insensitive to light when the RING domain was disrupted. Finally, ABA-hypersensitive phenotypes were confirmed by transgenic calli and the ectopic expression of MdSINA2 in Arabidopsis. In conclusion, our results suggest that MdSINA genes participate in the responses to different types of stress, and that MdSINA2 might act as a negative regulator in the ABA stress response.
Iron (Fe) is an essential element for plant growth, development and metabolism. Due to its lack of solubility and low bioavailability in soil, Fe levels are usually far below the optimum amount for most plants' growth and development. In apple production, excessive use of nitrogen fertilizer may cause iron chlorosis symptoms in the newly growing leaves, but the regulatory mechanisms underlying this phenomenon are unclear. In this study, low nitrate (NO 3 − , LN) application alleviated the symptoms of Fe deficiency and promoted lower rhizosphere pH, which was beneficial for root Fe acquisition. At the same time, LN treatment increased citrate and abscisic acid accumulation in roots, which promoted Fe transport from root to shoot and maintained Fe homeostasis. Moreover, qRT-PCR analysis showed that nitrate application caused differential expression of genes related to Fe uptake and transport, as well as transcriptional regulators. In summary, our data reveal that low nitrate alleviated Fe deficiency through multiple pathways, demonstrating a new option for minimizing Fe deficiency by regulating the balance between nutrients.Fe is an essential element for plant growth and development, due to its role in iron-sulphur (FeS) proteins, ferredoxins and various metabolic enzymes. It impacts various cellular processes, including photosynthesis, respiration, electron transfer reactions and others (Connorton, Balk, & Rodríguez-Celma, 2017). Excessive Fe causes yellow-brown spots on older leaves and represses plant growth, whereas Fe deficiency triggers chlorosis and reduces fruit yields
Jasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.