The rapid development of wearable devices puts forward higher requirements for mass-produced integrated smart systems that incorporate multiple electric components, such as energy supplying, multisensing, and communicating. To synchronously realize continuously self-powering, multifunctional sensing, distinguish signals from different stimuli, and productively design and fabricate a large-area sensing array, an all-fabric-based self-powered pressure–temperature-sensing electronic skin (e-skin) was prepared in this study by assembling highly flexible and compressible 3D spacer fabric (SF) and the thermoelectric poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS). The all-fabric-based e-skin can efficiently and accurately sense the temperature with a detection resolution of 0.1 K and a response time of 1 s, as well as pressure within a wide range of 200 Pa to 200 kPa and a fast response time of 80 ms. The electricity necessary for driving the sensor can be provided by the temperature difference between the body and environment. Notably, independent voltage and current signals can be generated and read out under the simultaneous temperature–pressure stimuli. For the first time, a real waistcoat-like e-skin with electricity-generating and pressure–temperature-sensing functions on the whole area was designed and prepared by a simple and easy to scale-up production method. All of these features make the developed all-fabric self-powered sensor have very promising applications.
Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa(-1)) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.
Fiber-based organic electrochemical transistors (FECTs) provide a new platform for the realization of an ultrafast and ultrasensitive biosensor, especially for the wearable dopamine (DA)-monitoring device. Here, we presented a fully filament-integrated fabric, it exhibited remarkable mechanical compatibility with the human body, and the minimum sensing unit was an organic electrochemical transistor (OECT) based on PVA-co-PE nanofibers (NFs) and polypyrrole (PPy) nanofiber network. The introduction of NFs notably increased the specific surface area and hydrophilicity of the PA6 filament, resulting in the formation of a large area of intertwined PPy nanofiber network. The electrical performance of PPy nanofiber network-modified fibers improved considerably. For the common FECTs, the typical on/off ratio was up to two orders of magnitude, and the temporal recovery time between on and off states was shortened to 0.34 s. Meanwhile, the device exhibited continuous cycling stability. In addition, the performances of FECT-based dopamine sensors depending on different gate electrodes have also been investigated. The PPy/NFs/PA6 filament-based dopamine sensor was more superior to the gold and platinum (Pt) wires, and the sensor presented long-term sensitivity with a detection region from 1 nM to 1 μM, rapid response time to a set of DA concentrations, remarkable selectivity in the presence of sodium chloride, uric acid, ascorbic acid and glucose, and superior reproducibility. Moreover, it could also be woven into the fabric product. The novel and wearable FECT device shows the potential to become the state-of-the-art DA-monitoring platform.
Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 μA/dec in the 10(-5)-10(-2) M Pb(2+) concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb(2+) with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application. Graphical Abstract The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.