Increasing evidence indicates that stimulating hippocampal neurogenesis could provide novel avenues for the treatment of depression, and recent studies have shown that in vitro neurogenesis is enhanced by hypoxia. The aim of this study was to investigate the potential regulatory capacity of an intermittent hypobaric hypoxia (IH) regimen on hippocampal neurogenesis and its possible antidepressant-like effect. Here, we show that IH promotes the proliferation of endogenous neuroprogenitors leading to more newborn neurons in hippocampus in adult rats. Importantly, IH produces antidepressant-like effects in multiple animal models screening for antidepressant activity, including the forced swimming test, chronic mild stress paradigm, and novelty-suppressed feeding test. Hippocampal x-ray irradiation blocked both the neurogenic and behavioral effects of IH, indicating that IH likely produces antidepressant-like effects via promoting neurogenesis in adult hippocampus. Furthermore, IH stably enhanced the expression of BDNF in hippocampus; both the antidepressantlike effect and the enhancement of cell proliferation induced by IH were totally blocked by pharmacological and biological inhibition of BDNF-TrkB (tyrosine receptor kinase B) signaling, suggesting that the neurogenic and antidepressant-like effects of IH may involve BDNF signaling. These observations might contribute to both a better understanding of physiological responses to IH and to developing IH as a novel therapeutic approach for depression.
3-D anatomic evidence of intraosseous arterial distribution of the femoral head and the high frequency with which the inferior retinacular arteries remained patent after femoral neck fracture lead us to consider the necessity of drilling and placing internal implants closer to the central region of the femoral head during surgery. Future controlled studies might evaluate this proposition.
We describe a technique for perfusing a barium sulphate suspension into the intraosseous artery. Following the perfusion of abarium sulphate suspension into 14 fresh lower limbs of Chinese cadavers, micro-CT scanning was applied to digitize, quantify and visualize the intraosseous arteries in the human femoral heads. Then, the femoral heads were removed and subjected to micro-CT scanning. The data were imported into the amira and mimics programs to reconstruct and quantify the intraosseous arteries. The femoral head intraosseous artery lengths, areas, volumes, and femoral head bone volumes were quantified. The artery densities and artery ratios were calculated and analysed with independent-samples t-tests. The intraosseous vasculature volume renderings were displayed as screenshots and videos made with amira. Many intraosseous artery study technologies were compared. The barium sulphate suspension was milky white in colour. The perfusion of the barium sulphate suspension followed by micro-CT scanning provided a good representation of the intraosseous artery. The femoral head intraosseous artery lengths, areas and volumes, and the femoral head bone volumes were displayed as the X¯±S . No differences were observed between the left and right femoral head intraosseous arteries in terms of the artery densities or artery ratios. The volume renderings and 3-D orthogonal projections displayed the overall distributions of the intraosseous arteries. The videos clearly demonstrated the entry sites of the nutrition-carrying arteries, their courses and branches, and the intraosseous arterial anastomoses. Our technique is the simplest and least time-consuming method of producing accurate vascular three-dimensional reconstructions. The perfusion of a barium sulphate suspension into intraosseous arteries combined with micro-CT scanning can deliver high-resolution 3-D digitized data and images of intraosseous arteries. This technique does not require bone decalcification or bone dissection and thus significantly shortens the time required to quantify and display intraosseous arteries. This method provides a simple and rapid technique for quantifying and visualizing human intraosseous arteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.