Nonclassical effects in mesoscopic systems have attracted much attention recently. In this paper, it is shown that multiphonon bundle emission can be observed in a strong-coupling cavity optomechanical system. Theoretical analysis shows that when the driving field is adjusted to nth-order sideband excitation, the coupling between the cavity mode and the vibrational mode leads to super-Rabi oscillations, and finally results in an n-phonon bundles emission. Based on the current technology, this process can work in a wide range of parameters. Numerical simulation confirms the validity of the derivation. It is thought that this physical mechanism broadens the applications of cavity optomechanical system in realm of quantum phononics, such as in quantum metrology and phonon laser.
We present an alternative scheme to achieve Schrödinger cat states in a strong coupling hybrid cavity optomechanical system. Under the single-photon strong-coupling regime, the interaction between the atom–cavity–oscillator system can induce the mesoscopic mechanical oscillator to Schrödinger cat states. Comparing to previous schemes, the proposed proposal consider the second order approximation on the Lamb–Dicke parameter, which is more universal in the experiment. Numerical simulations confirm the validity of our derivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.