Pulmonary arterial hypertension (PAH) is a common clinical cardiovascular disease, leading to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and endothelial cells, and is associated with a high mortality rate. Recently, stem- and progenitor cell-mediated gene therapies have provided a novel approach for the treatment of PAH. However, the function of human bone marrow-derived mesenchymal stem cells (hBM‑MSCs) modified with the insulin-like growth factor binding protein-3 (IGFBP-3) gene in the regulation of PAH is not yet fully understood. In this study, we explored the biological role of IGFBP‑3-modified hBM‑MSCs in the proliferation of human PASMCs (hPASMCs), and also investigated the potential underlying molecular mechanisms. Our results revealed that IGFBP-3-modified hBM‑MSCs inhibited the proliferation of angiotensin II-stimulated hPASMCs following co-culture on cell culture inserts. In addition, total DNA synthesis and the protein levels of hPASMCs in co-culture were decreased. Moreover, the IGFBP‑3-modified hBM‑MSCs promoted apoptosis and downregulated the expression of B-cell lymphoma-2 (Bcl-2), but increased the expression of Bcl-2 associated X protein (Bax) in hPASMCs. Furthermore, the IGFBP‑3-modified hBM‑MSCs significantly induced a phenotypic change in the hPASMCs from the synthetic to the contractile phenotype in co-culture. Importantly, the levels of several related proteins in the hPASMCs, including phosphorylated (p-)insulin receptor substrate-1 (p-IRS-1), phosphoinositide 3-kinase (p-PI3K), serine/threonine-protein kinase (p-Akt), mitogen-activated protein kinase (p-p38), p-Jun N-terminal kinase (p-JNK) and extracellular signal-regulated kinase (p-ERK), were markedly decreased by the IGFBP-3-modified hBM‑MSCs following co-culture. Taken together, our findings suggest that IGFBP-3-modified hBM‑MSCs inhibit the proliferation and promote the apoptosis of hPASMCs, and promote the swithc to a contractile phenotype in more effectively than wild-type hBM‑MSCs, possibly through the activation of the PI3K/Akt and Ras-mitogen-activated protein kinase (MAPK) signaling pathways. The findings of our study suggest that IGFBP‑3‑modified hBM‑MSCs may be a promising therapeutic strategy for the treatment of PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.