Vitamin C (L-ascorbic acid) is essential for many enzymatic reactions, in which it serves to maintain prosthetic metal ions in their reduced forms (for example, Fe2+, Cu+), and for scavenging free radicals in order to protect tissues from oxidative damage. The facilitative sugar transporters of the GLUT type can transport the oxidized form of the vitamin, dehydroascorbic acid, but these transporters are unlikely to allow significant physiological amounts of vitamin C to be taken up in the presence of normal glucose concentrations, because the vitamin is present in plasma essentially only in its reduced form. Here we describe the isolation of two L-ascorbic acid transporters, SVCT1 and SVCT2, from rat complementary DNA libraries, as the first step in investigating the importance of L-ascorbic acid transport in regulating the supply and metabolism of vitamin C. We find that SVCT1 and SVCT2 each mediate concentrative, high-affinity L-ascorbic acid transport that is stereospecific and is driven by the Na+ electrochemical gradient. Despite their close sequence homology and similar functions, the two isoforms of the transporter are discretely distributed: SVCT1 is mainly confined to epithelial systems (intestine, kidney, liver), whereas SVCT2 serves a host of metabolically active cells and specialized tissues in the brain, eye and other organs.
Calcium is a major component of the mineral phase of bone and serves as a key intracellular second messenger. Postnatally, all bodily calcium must be absorbed from the diet through the intestine. Here we report the properties of a calcium transport protein (CaT1) cloned from rat duodenum using an expression cloning strategy in Xenopus laevis oocytes, which likely plays a key role in the intestinal uptake of calcium. CaT1 shows homology (75% amino acid sequence identity) to the apical calcium channel ECaC recently cloned from vitamin D-responsive cells of rabbit kidney and is structurally related to the capsaicin receptor and the TRP family of ion channels. Based on Northern analysis of rat tissues, a 3-kilobase CaT1 transcript is present in rat duodenum, proximal jejunum, cecum, and colon, and a 6.5-kilobase transcript is present in brain, thymus, and adrenal gland.
The human concentrative (Na ؉ -linked) plasma membrane transport proteins hCNT1 and hCNT2 are selective for pyrimidine nucleosides (system cit) and purine nucleosides (system cif), respectively. Both have homologs in other mammalian species and belong to a gene family (CNT) that also includes hfCNT, a newly identified broad specificity pyrimidine and purine Na ؉ -nucleoside symporter (system cib) from the ancient marine vertebrate, the Pacific hagfish (Eptatretus stouti). We now report the cDNA cloning and characterization of cib homologs of hfCNT from human mammary gland, differentiated human myeloid HL-60 cells, and mouse liver. The 691-and 703-residue human and mouse proteins, designated hCNT3 and mCNT3, respectively, were 79% identical in amino acid sequence and contained 13 putative transmembrane helices. hCNT3 was 48, 47, and 57% identical to hCNT1, hCNT2, and hfCNT, respectively. When produced in Xenopus oocytes, both proteins exhibited Na ؉ -dependent cib-type functional activities. hCNT3 was electrogenic, and a sigmoidal dependence of uridine influx on Na ؉ concentration indicated a Na ؉ : uridine coupling ratio of at least 2:1 for both hCNT3 and mCNT3 (cf 1:1 for hCNT1/2). Phorbol myristate acetateinduced differentiation of HL-60 cells led to the parallel appearance of cib-type activity and hCNT3 mRNA. Tissues containing hCNT3 transcripts included pancreas, bone marrow, trachea, mammary gland, liver, prostrate, and regions of intestine, brain, and heart. The hCNT3 gene mapped to chromosome 9q22.2 and included an upstream phorbol myristate acetate response element.Most nucleosides, including those with antineoplastic and/or antiviral activities (1, 2), are hydrophilic, and specialized plasma membrane nucleoside transporter (NT) 1 proteins are required for uptake into or release from cells (3, 4). NT-mediated transport is therefore a critical determinant of metabolism and, for nucleoside drugs, their pharmacologic actions (5). NTs also regulate adenosine concentrations in the vicinity of cell surface receptors and have profound effects on neurotransmission, vascular tone, and other processes (6, 7).Seven nucleoside transport processes 2 that differ in their cation dependence, permeant selectivities and inhibitor sensitivities have been observed in human and other mammalian cells and tissues. The major concentrative systems (cit, cif, and cib) are inwardly directed Na ϩ -dependent processes and have been primarily described in specialized epithelia such as intestine, kidney, liver, and choroid plexus, in other regions of the brain, and in splenocytes, macrophages, and leukemic cells (3, 4). Concentrative NT transcripts have also been found in heart, skeletal muscle, placenta, and pancreas. The equilibrative (bidirectional) transport processes (es and ei) have generally lower substrate affinities and occur in most, possibly all, cell types (3, 4). Epithelia (e.g. intestine and kidney) and some nonpolarized cells (e.g. leukemic cells) coexpress both concentrative and equilibrative NTs, whereas other nonpola...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.