Background
Acute lung injury (ALI) is a fatal disease in the absence of pharmacological treatment. Oxidative stress and inflammation are closely related to ALI. Innate immune cells are the main source of reactive oxygen species (ROS). Macrophages play an extremely important role in ALI through the activation of inflammation and oxidative stress. Itaconate, a metabolite of tricarboxylic acid, has been reported to have strong antioxidant and anti-inflammatory effects. However, the role of itaconate in ALI is unclear. Herein, we use 4-octyl itaconate (OI), the cellular permeable derivate of itaconate, to study the effects of itaconate in vivo and in vitro.
Methods
We used OI to pretreat C57BL/6 mice and LPS-induced ALI models to illustrate the role of itaconate in acute lung injury. The mice were randomly divided into four groups: control group, OI (100 mg/kg) group, ALI Group, ALI + OI (50 mg/kg) group, and ALI + OI (100 mg/kg) group. RAW264.7 cells were used to further prove the role and mechanism of itaconate in vitro.
Results
According to the H&E staining of the lung, OI was observed to significantly reduce lung inflammation. The active oxygen content of tissues was also significantly reduced (P<0.05). OI reduced the accumulation of neutrophils and secretion of inflammatory factors in LPS-induced ALI (P<0.05). At the cellular level, OI also reduced oxidative stress and inflammation. Intervention with OI was also observed to upregulate the expression of nuclear factor erythroid 2-related factor-2 (Nrf-2) and Nrf-2 target genes in the lung tissue and RAW264.7 cells.
Conclusion
OI alleviates LPS-induced ALI. Moreover, the antioxidant and anti-inflammatory effects of OI might depend on the activation of Nrf-2. Therefore, OI might have therapeutic potential for the treatment of ALI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.