SummaryWe collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification.
With the ever increasing demand for energy to meet the needs of growth in population and improvement in the living standards in particular in developing countries, the abundant unconventional oil reserves (about 70% of total world oil), such as heavy oil, oil/tar sands and shale oil, are playing an increasingly important role in securing global energy supply. Compared with the conventional reserves unconventional oil reserves are characterized by extremely high viscosity and density, combined with complex chemistry. As a result, petroleum production from unconventional oil reserves is much more difficult and costly with more serious environmental impacts. As a key underpinning science, understanding the interfacial phenomena involved in unconventional petroleum production, such as oil liberation from host rocks, oil-water emulsions and demulsification, is critical for developing novel processes to improve oil production while reducing GHG emission and other environmental impacts at a lower operating cost. In the past decade, significant efforts and advances have been made in applying the principles of interfacial sciences to better understand complex unconventional oil-systems, while many environmental and production challenges remain. In this critical review, the recent research findings and progress in the interfacial sciences related to unconventional petroleum production are critically reviewed. In particular, the chemistry of unconventional oils, liberation mechanisms of oil from host rocks and mechanisms of emulsion stability and destabilization in unconventional oil production systems are discussed in detail. This review also seeks to summarize the current state-of-the-art characterization techniques and brings forward the challenges and opportunities for future research in this important field of physical chemistry and petroleum.
Fischer–Tropsch synthesis (FTS) is a promising technology to convert syngas derived from non-petroleum-based resources to valuable chemicals or fuels. Selectively producing target products will bring great economic benefits, but unfortunately it is theoretically limited by Anderson–Schulz–Flory (ASF) law. Herein, we synthesize size-uniformed cobalt nanocrystals embedded into mesoporous SiO2 supports, which is likely the structure of water-melon seeds inside pulps. We successfully tune the selectivity of products from diesel-range hydrocarbons (66.2%) to gasoline-range hydrocarbons (62.4%) by controlling the crystallite sizes of confined cobalt from 7.2 to 11.4 nm, and modify the ASF law. Generally, larger Co crystallites increase carbon-chain growth, producing heavier hydrocarbons. But here, we interestingly observe a reverse phenomenon: the uniformly small-sized cobalt crystallites can strongly adsorb active C* species, and the confined structure will inhibit aggregation of cobalt crystallites and escape of reaction intermediates in FTS, inducing the higher selectivity towards heavier hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.