Neuromorphic vision sensors are bio-inspired cameras that naturally capture the dynamics of a scene with ultra-low latency, filtering out redundant information with low power consumption. Few works are addressing the object detection with this sensor. In this work, we propose to develop pedestrian detectors that unlock the potential of the event data by leveraging multi-cue information and different fusion strategies. To make the best out of the event data, we introduce three different event-stream encoding methods based on Frequency, Surface of Active Event (SAE) and Leaky Integrate-and-Fire (LIF). We further integrate them into the state-of-the-art neural network architectures with two fusion approaches: the channel-level fusion of the raw feature space and decision-level fusion with the probability assignments. We present a qualitative and quantitative explanation why different encoding methods are chosen to evaluate the pedestrian detection and which method performs the best. We demonstrate the advantages of the decision-level fusion via leveraging multi-cue event information and show that our approach performs well on a self-annotated event-based pedestrian dataset with 8,736 event frames. This work paves the way of more fascinating perception applications with neuromorphic vision sensors.
In this paper, by using Sadovskii fixed point theorem, we study the existence of solutions and periodic solutions for a class of abstract neutral functional evolution equations with infinite delay. An example is presented in the end to show the applications of the obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.