Abstract. Global water models (GWMs) simulate the terrestrial water cycle on the global scale and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modelling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how 16 state-of-the-art GWMs are designed. We analyse water storage compartments, water flows, and human water use sectors included in models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to enhance model intercomparison, improvement, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Six models used six compartments, while four models (DBH, JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPI-HM) simulate only water for the irrigation sector. We conclude that, even though hydrological processes are often based on similar equations for various processes, in the end these equations have been adjusted or models have used different values for specific parameters or specific variables. The similarities and differences found among the models analysed in this study are expected to enable us to reduce the uncertainty in multi-model ensembles, improve existing hydrological processes, and integrate new processes.
In addition to high temperature, high humidity can have significant consequences on thermal comfort of human beings. The co-occurrence of high temperature and high humidity (so-called 'oppressive hot days') often results in heat stress events, but the extent to which it is affected by preceding surface moisture has not been fully understood to date. In this study, we examine the relations between preceding 3-month standardized precipitation index (SPI) and the number of hot days indicated by the surface air temperature (NHD-Tx) and the wet-bulb globe temperature (NHD-Wx) that combines both temperature and humidity in the hottest month in low latitudes. Results show that, in contrast with the negative correlations between SPI and NHD-Tx, which are associated with the previously reported precipitation deficit-temperature feedback, significant positive correlations between SPI and NHD-Wx are found in some low latitude areas. The probability of above-average NHD-Wx could be ∼30% higher after wet conditions than that after dry conditions in areas like southern South America, some parts of Africa, and West Asia. Hotspot analyses further show that abundant preceding rainfall has an asymmetric impact on oppressive hot days by favoring more above-average NHD-Wx. Our analyses imply that a local feedback may exist between surface moisture and oppressive hot extremes, via which the unbearable heat stress over some parts of the tropics is modulated, controlled, and/or caused by changes in the preceding near-surface humidity/soil moisture. The spatially heterogeneous patterns of the relations between preceding rainfall and heat stress confirm the precipitation deficit-temperature feedback in many areas and reveal the coexistence of surface moisture-oppressive heat stress in several low latitude areas. We emphasize the necessity of considering both feedbacks for a better understanding of the distinct roles of preceding rainfall in the consequent development of heat stress in low latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.