Silkworms (Bombyx mori) reared on artificial diets during all instars have the advantages of simplicity and efficiency, year-round production, and reduced risk of poisoning. However, low silk yield remains a challenge, limiting its industrial application. To address this issue, the spinning behavior, nutrient absorption, and transcriptomics of silkworms were investigated. Compared with silkworms reared on mulberry leaves during all instars, those fed with artificial diets showed significantly lower cocoon weight, cocoon shell weight, cocoon shell rate, and silk gland tissue somatic index at the end of the fifth instar (P < 0.01). The spinning duration and crawling distance of silkworms reared on artificial diets were also significantly lower than those reared on mulberry leaves (P < 0.01). Regarding nutrient absorption, the dietary efficiency indexes of silkworms fed with artificial diets were significantly lower than those fed with mulberry leaves, except for the efficiency conversion of digesta to cocoon (P < 0.01). Further RNA-Seq analysis revealed 386 differentially transcribed genes between the 2 groups, with 242 upregulated and 144 downregulated genes. GO enrichment analysis showed that differential transcriptional genes were mainly enriched in organic acid metabolism, oxidation–reduction, and drug catabolism. KEGG enrichment analysis showed that differential transcriptional genes were mainly enriched in genetic information processing and metabolism pathways. Our findings provide new insights into the silk secretion and can serve as a reference for future research and application of silkworms fed with artificial diets.
IntroductionTitanium dioxide nanoparticles (TiO2 NPs) are among the most widely used inorganic nanomaterials in industry, medicine and food additives. There are increasing concerns regarding their potential risks to plants and the environment. Mulberry trees are widely grown in China due to their high survival rate and ability to aid ecological recovery.MethodsHerein, the effects of TiO2 NPs with different concentrations (100, 200, 400 and 800 mg/L) on the growth and physiology of the mulberry tree were systematically evaluated in aspects of physiology, transcriptomics and metabolomics.ResultsResults showed that TiO2 NPs could be absorbed by the mulberry sapling root system and be transferred to the plant shoot. This results in the destruction of mulberry sapling root and leaf tissue. Furthermore, the number of chloroplasts and their pigment contents were reduced and the homeostasis of metal ions was disrupted. The toxic effects of TiO2 NPs attenuated the mulberry sapling’s stress resistance, the contents of malondialdehyde in 100 mg/L, 200 mg/L 400 mg/L and 800 mg/L treatment groups increased by 87.70%, 91.36%, 96.57% and 192.19% respectively compared with the control group. The transcriptomic data showed that TiO2 NPs treatment mainly affected the expression of genes related to energy synthesis and transport, protein metabolism, and response to stress. Meanwhile, the results of metabolomics showed that 42 metabolites produced significant differences in mulberry, of which 26 differential metabolites were up-regulated in expression and 16 differential metabolites were down-regulated, mainly including metabolic pathways such as secondary metabolite biosynthesis, citric acid cycle, and tricarboxylic acid cycle, and was not conducive to the seed germination and or growth of the mulberry sapling.DiscussionThis study enriches the understanding of the effects of TiO2 NPs on plants and provides a reference for the comprehensive scientific assessment of the potential risks of nanomaterials on plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.