Strategies for selectively imaging and delivering drugs to tumours typically leverage differentially upregulated surface molecules on cancer cells. Here, we show that intravenously injected carbon quantum dots, functionalized with multiple paired α-carboxyl and amino groups that bind to the large neutral amino acid transporter 1 (which is expressed in most tumours), selectively accumulate in human tumour xenografts in mice and in an orthotopic mouse model of human glioma. The functionalized quantum dots, which structurally mimic large amino acids and can be loaded with aromatic drugs through π-π stacking interactions, enabled-in the absence of detectable toxicity-near-infrared fluorescence and photoacoustic imaging of the tumours and a reduction in tumour burden after the targeted delivery of chemotherapeutics to the tumours. The versatility of functionalization and high tumour selectivity of the quantum dots make them broadly suitable for tumour-specific imaging and drug delivery.
In recent years, various studies have confirmed the role of natural products as effective cancer prevention and treatment drugs. The present study demonstrated that chitosan oligosaccharide (COS) from shells of shrimp and crab caused an inhibitory effect on the proliferation of human renal carcinoma in vitro and in vivo. First, the in vivo biodistribution of COS was investigated by the synthesis of cyanine-7-labeled COS (COS−Cy7) following tail vein injection. The kidney was found to be a major target organ. Then, the impacts on renal carcinoma cell proliferation, apoptosis, and reactive oxygen species (ROS) production were observed in vitro, and an orthotopic xenograft tumor model was designed to evaluate the antitumor efficacy of COS in vivo. In renal carcinoma cells, COS induced G2/M phase arrest and apoptosis in a ROS-dependent fashion. COS significantly promoted mRNA expression of nuclear factor erythroid 2-related factor (Nrf2) and Nrf2 target genes, such as heme oxygenase 1, modifier subunit of glutamate cysteine ligase, and solute carrier family 7 member 11. Additionally, COS significantly upregulated the protein expression of glucose-regulated protein 78, protein RNA-like endoplasmic reticulum (ER) kinase, eukaryotic initiation factor 2α, activating transcription factor 4, C/EBP homologous protein, and cytochrome c, which justified the activation of the ER stress signaling pathway. In vivo, COS repressed tumor growth and induced apoptosis and ROS accumulation, consistent with the in vitro results. Taken together, COS repressed human renal carcinoma growth and induced apoptosis both in vitro and in vivo, mainly via ROS-dependent ER stress pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.