With the continuous expansion of the network scale and increasing of passengers, metro emergencies such as operational equipment failure are happening more frequently. Due to the narrow space and crowds of people, metro emergencies always have more of an impact than road traffic emergencies. In order to adopt appropriate measures to ensure passenger safety and avoid risks, we need to get a better understanding of passengers’ travel choice behaviors under emergencies. Most of the existing research studies related to travel choice behaviors took the random utility maximization (RUM) principle for granted, but failed to realize the potential of different decision-making processes and changes to the decision-making environment. In this research, we aim to analyze metro passengers’ travel choice behaviors under metro network emergency contexts. Based on the data collected from a survey about travel choices under metro emergencies in the Guangzhou Metro, we compared the performances of models that follow the RUM and random regret minimization (RRM) principles, and established a hybrid RUM-RRM model as well as a nested logit model following RRM (NL-RRM) to estimate the effects of various factors on passengers’ travel choice behaviors. Comparisons illustrate that the hybrid model and NL-RRM model can improve model fit, and the combination of RUM and RRM outperforms either of them respectively.
Generally, metro emergencies could lead to delays and seriously affect passengers’ trips. The dynamic congestion propagation process under metro emergency-caused delays could be regarded as the aggregation of passengers’ individual travel choices. This paper aims to simulate the congestion propagation process without intervention measures under the metro emergency-caused delays, which is integrated with passengers’ route choice behaviors. First, using a stated preference survey data collected from Guangzhou Metro (GZM) passengers, route choice models are developed based on random regret minimization (RRM) theory under metro emergency conditions. Then, a simulation environment is established using graph cellular automata (graph-CA) with augmented GZM network structure, where an ASEIR (advanced susceptible-exposed-infectious-recovered) model with time delay is proposed as the evolution rule in graph-CA. Furthermore, considering passengers’ routing preferences, a quantified method for the congestion propagation rate is proposed, and the congestion propagation process on a subnetwork of the GZM network is simulated. The simulation results show that metro congestion during peak periods has a secondary increase after the end of the emergency-caused delays, while the congestion during nonpeak hours has a shorter duration and a smaller influence range. The proposed simulation model could clearly reflect the dynamic process of congestion propagation under metro emergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.