To construct a more effective model with good generalization performance for inter-site autism spectrum disorder (ASD) diagnosis, domain adaptation based ASD diagnostic models are proposed to alleviate the inter-site heterogeneity. However, most existing methods only reduce the marginal distribution difference without considering class discriminative information, and are difficult to achieve satisfactory results. In this paper, we propose a low rank and class discriminative representation (LRCDR) based multi-source unsupervised domain adaptation method to reduce the marginal and conditional distribution differences synchronously for improving ASD identification. Specifically, LRCDR adopts low rank representation to alleviate the marginal distribution difference between domains by aligning the global structure of the projected multi-site data. To reduce the conditional distribution difference of data from all sites, LRCDR learns the class discriminative representation of data from multiple source domains and the target domain to enhance the intra-class compactness and inter-class separability of the projected data. For inter-site prediction on all ABIDE I data (1102 subjects from 17 sites), LRCDR obtains the mean accuracy of 73.1%, superior to the results of the compared state-of-the-art domain adaptation methods and multi-site ASD identification methods. In addition, we locate some meaningful biomarkers: Most of the top important biomarkers are inter-network resting-state functional connectivities (RSFCs). The proposed LRCDR method can effectively improve the identification of ASD, and has great potential as a clinical diagnostic tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.