Bone metastasis is a main cause of cancer-related mortality in patients with advanced prostate cancer. Emerging evidence suggests that the acidic extracellular microenvironment plays significant roles in the growth and metastasis of tumors. However, the effects of acidity on bone metastasis of PCa remain undefined. In the present study, PC-3 cells were cultured in acidic medium (AM; pH 6.5) or neutral medium (NM; pH 7.4), aiming to investigate the effects and possible mechanisms of acidic extracellular microenvironment in bone metastasis of PCa. Our results showed that AM can promote spheroid and colony formations, cell viability and expression of stem cell characteristic-related markers in PC-3 cells. Moreover, AM stimulates MMP-9 secretion and promotes invasiveness of PC-3 cells, and these effects can be inhibited by blocking of MMP-9. Furthermore, AM stimulates VEGF secretion of PC-3 and AM conditioned medium (CMAM) promotes vasculogenesis of BM-EPCs by increasing cell viability, migration, tube formation, which involved activating the phosphorylation of VEGFR-2, Akt and P38, when pH of NM conditioned medium (CMNM) was modulated the same as AM conditioned medium (CMAM). Further studies have shown that CMNM induced vasculogenesis of BM-EPCs can be inhibited by the inhibition of VEGFR2 with DMH4. These findings suggest that acidic extracellular microenvironment may have the potential to modulate prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Improved anticancer strategies should be designed to selectively target acidic tumor microenvironment.
Purpose
Chronic obstructive pulmonary disease (COPD) is associated with a complex inflammatory regulatory network. Resistin-like molecule β (RELMβ) is highly expressed in the lungs of COPD patients. We aimed to investigate the proinflammatory effect of RELMβ on airway epithelial cells in COPD.
Methods
First, a GEO dataset was used to analyze the expression of the RELMβ gene in the COPD and control groups as well as the protein levels of RELMβ in the sera of outpatients with COPD and normal control subjects in our hospital. We also stimulated 16HBE bronchial epithelial cells with recombinant RELMβ protein and analyzed the expression of IL-8 and IL-1β. We upregulated and downregulated the gene expression of RELMβ in 16HBE cells and analyzed the expression of the inflammatory cytokines IL-8 and IL-1β. In addition, we also examined the mechanism by which the p38 MAPK signaling pathway contributed to the regulation of IL-8 and IL-1β expression by RELMβ.
Results
RELMβ expression was increased in COPD tissues in different data sets and in the serum of COPD patients in our hospital. IL-8 and IL-1β expression was also increased in COPD tissues with high RELMβ gene expression in different data sets. The RELMβ gene was mainly related to inflammatory factors and inflammatory signaling pathways in the PPI regulatory network. Experiments at the cellular level showed that RELMβ promoted the expression of the inflammatory cytokines IL-8 and IL-1β, and this regulation was mediated by the p38 MAPK signaling pathway.
Conclusion
RELMβ can promote the expression of the inflammatory cytokines IL-8 and IL-1β in bronchial epithelial cells of patients with COPD and exert inflammatory effects. RELMβ may be a potential target for the treatment of COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.