Today's power systems become more prone to cyberattacks due to the high integration of information technologies. In this paper, we demonstrate that the outages of some lines can be masked by injecting false data into a set of measurements. The success of the topology attack can be guaranteed by making that: 1)the injected false data obeys KCL and KVL to avoid being detected by the bad data detection program in the state estimation; 2)the residual is increased such that the line outage cannot be detected by PMU data. A quadratic programming problem is set up to determine the optimal attack vector that can maximize the residual of the outaged line. The IEEE 39-bus system is used to demonstrate the masking scheme.
Treatment of spinal cord injury (SCI) remains a clinical challenge worldwide because of the complicated inhibitory microenvironment formed post-injury, reduced axonal regenerative ability of spinal cord neurons, and scarcity of endogenous neurogenesis within the lesion center. Taxol, in addition to stabilizing microtubules, has shown potential for decreasing axonal degeneration and reducing scar formation after SCI in rodents. In this study, we further verified the therapeutic effects and clinical potential of Taxol on restriction of scar formation and promotion of neuronal regeneration and functional recovery after severe spinal cord transection in a large animal (canine) model. A linear-ordered collagen scaffold (LOCS) combined with Taxol was implanted into the injury site after the complete removal of 1 cm of spinal tissue. Afterwards, diligent nursing and multi-system rehabilitation were carried out during a half-year period of observation. The results showed that LOCS + Taxol implantation markedly promoted motor-evoked potentials and locomotion recovery. Moreover, histological analysis demonstrated that LOCS + Taxol implantation significantly increased neurogenesis and axon regeneration to reconnect the spinal cord stumps. Additionally, reduced glial scar formation was observed within the lesion site. Thus, LOCS + Taxol implantation treatment is a promising combinatorial therapy for the treatment of acute long-distance spinal cord defects.
Three-dimensional (3D) culture has been increasingly used to investigate tumor cell biology for improved simulation of the natural developing environment. However, the way in which 3D culture affects the gene expression and biological functions of glioma cells remains to be fully elucidated. In the present study, 3D culture environments were established using collagen scaffolds with different pore sizes, followed by the comparison of gene expression profiles and associated biological functions of glioma cells, including the U87, U251 and HS683 cell lines, in 3D collagen scaffolds with conventional two-dimensional (2D) cultured cells. Finally, the possible signaling pathways regulating these differences were investigated. It was found that the 3D collagen scaffold culture upregulated the expression of genes associated with stemness, cell cycle, apoptosis, epithelia-mesenchymal transition, migration, invasion and glioma malignancy, and induced the corresponding functional changes. Apoptotic pathways, the Wnt pathway, Sonic Hedgehog pathway and Notch pathway, may be involved in the regulation of these changes. The aperture size of the collagen-scaffold did not appear to affect the gene expression or functions of the glioma cells. The results of the study suggested that the 3D collagen scaffold enhanced the malignancy of glioma cells and may be a promising in vitro platform for investigations of glioma.
Abstract. Phospholipase C (PLC) is a pivotal enzyme in the phosphoinositide pathway that promotes the second messengers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), to participate in eukaryotic signal transduction. Several PLC isozymes are associated with cancer, such as PLC-β1, PLC-δ1, PLC-ε and PLC-γ1. However, the role of PLC-δ3 (PLCD3) in nasopharyngeal carcinoma (NPC) has not been investigated to date. In our previous study, we demonstrated that flotillin2 (Flot2) plays a pro-neoplastic role in NPC and is involved in tumour progression and metastasis. In the present study, we screened the interacting proteins of Flot2 using the yeast two-hybrid (Y2H) method and verified the interaction between PLCD3 and Flot2 by co-immunoprecipitation. We also investigated the biological functions of PLCD3 in NPC. Inhibition of PLCD3 expression impaired the malignant potential of 5-8F, a highly metastatic NPC cell line, by restraining its growth, proliferation, mobility and migration. The present study demonstrated that PLCD3 may be an oncogenic protein in NPC and that it plays an important role in the progression of NPC partially by interacting with Flot2.
In this article, a series of modifications were made on an antimicrobial peptide F2,5,12W, including altering the amino acid sequence, introducing cysteine and other typical amino acids, developing peptide dimers via disulfide bonds, and conjugating with mPEG, in order to enhance the antimicrobial activity, plasma stability, and reduce the hemolytic activity of peptides. The results showed that mPEG conjugation could significantly improve the plasma stability and reduce the hemolytic activity of peptides, while the antimicrobial activity decreased meanwhile. However, altering the sequence of the peptide without changing its amino acid composition had little impact on its antimicrobial activity and plasma stability. The introduction of cysteine enhanced the plasma stability of peptides conspicuously, but at the same time, the increased hydrophobicity of peptides increased their hemolysis. The antimicrobial mechanism and cytotoxicity of the peptides with relatively high antimicrobial activity were also studied. In general, this study provided some ideas for the rational design and structure optimization of antimicrobial peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.