Healthy operation of the tail rope is crucial to the stable and safe operation of a friction hoisting system. Failure of the tail rope will threaten the property and personnel. In this study, a fault diagnosis algorithm based on deep learning is proposed for the tail rope. Specifically, we add a spatial attention mechanism in the feature extraction stage to assign different weights to different regions in images. This way “guides” the model to focus on more important regions. A class-balance cross-entropy loss is introduced to alleviate the imbalanced data distribution in the actual conditions for enhancing the robustness of the algorithm and its transferability in practical applications. Experimental studies are conducted to validate the algorithm. The accuracy of the algorithm on the conducted dataset is 99.4819%. The accuracy of the provided algorithm is increased by 10% and 7% compared with those of the hand-crafted features, namely, scale-invariant feature transform with support vector machine and random forest, respectively. Results show that the proposed algorithm can meet the requirements of high accuracy and generalization in practical engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.