Statistical process control (SPC) tools are used for the investigation and identification of unnatural variations in the manufacturing, industrial, and service processes. The control chart, the basic and the most famous tool of SPC, is used for process monitoring. Generally, control charts are constructed under normality assumption of the quality characteristic of interest, but in practice, it is quite hard to hold the normality assumption. In such situations, parametric charts tend to offer more frequent false alarms and invalid out-of-control performance. To rectify these problems, non-parametric control charts are used, as these have the same in-control run length properties for all the continuous distributions and are known as in-control robust. This study intends to develop a new non-parametric exponentially weighted moving average (NPEWMA) chart based on sign statistics under a ranked set sampling scheme that is hereafter named (NPREWMA-SN). The run-length profiles of the NPREWMA-SN chart are computed using the Monte Carlo simulation method. The proposed scheme is compared with NPEWMA-SN and classical EWMA-X¯ charts, using different run length measures. The comparison reveals the in-control robustness and superiority of the proposed scheme over its competitors in detecting all kinds of shifts in the process location. A practical application related to the substrate manufacturing process is included to show the demonstration of the proposed chart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.